Dataset Open Access
Arbash, Elias;
de Lima Ribeiro, Andrea;
Rizaldy, Aldino;
Fuchs, Margret;
Ghamisi, Pedram;
Scheunders, Paul;
Gloaguen, Richard
{
"conceptdoi": "10.14278/rodare.3389",
"stats": {
"volume": 15178715720.0,
"unique_downloads": 25.0,
"version_unique_downloads": 25.0,
"unique_views": 289.0,
"downloads": 28.0,
"version_unique_views": 289.0,
"version_views": 338.0,
"version_downloads": 28.0,
"version_volume": 15178715720.0,
"views": 338.0
},
"id": 3390,
"conceptrecid": "3389",
"links": {
"badge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.3390.svg",
"doi": "https://doi.org/10.14278/rodare.3390",
"conceptbadge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.3389.svg",
"conceptdoi": "https://doi.org/10.14278/rodare.3389",
"bucket": "https://rodare.hzdr.de/api/files/f751b71e-ce94-417e-8088-62806fbdb7c7",
"html": "https://rodare.hzdr.de/record/3390",
"latest": "https://rodare.hzdr.de/api/records/3390",
"latest_html": "https://rodare.hzdr.de/record/3390"
},
"doi": "10.14278/rodare.3390",
"updated": "2025-02-19T07:28:48.775167+00:00",
"revision": 7,
"files": [
{
"key": "Polymers 1.0.zip",
"checksum": "md5:517fa75105edc771304701e164c2e3fc",
"bucket": "f751b71e-ce94-417e-8088-62806fbdb7c7",
"links": {
"self": "https://rodare.hzdr.de/api/files/f751b71e-ce94-417e-8088-62806fbdb7c7/Polymers%201.0.zip"
},
"size": 542096990,
"type": "zip"
}
],
"owners": [
840
],
"created": "2025-01-21T10:28:43.931715+00:00",
"metadata": {
"pub_id": "40592",
"title": "Polymers Hyperspectral Imaging",
"version": "1.0",
"relations": {
"version": [
{
"index": 0,
"is_last": true,
"parent": {
"pid_type": "recid",
"pid_value": "3389"
},
"last_child": {
"pid_type": "recid",
"pid_value": "3390"
},
"count": 1
}
]
},
"notes": "The HSI dataset of the work: INVESTIGATING STATE OF THE ART HYPERSPECTRAL IMAGING CLASSIFICATION MODELS FOR PLASTIC TYPES IDENTIFICATION",
"communities": [
{
"id": "hzdr"
},
{
"id": "rodare"
}
],
"doi": "10.14278/rodare.3390",
"access_right": "open",
"related_identifiers": [
{
"relation": "isIdenticalTo",
"scheme": "url",
"identifier": "https://www.hzdr.de/publications/Publ-40592"
},
{
"relation": "isReferencedBy",
"scheme": "url",
"identifier": "https://www.hzdr.de/publications/Publ-40590"
},
{
"relation": "isVersionOf",
"scheme": "doi",
"identifier": "10.14278/rodare.3389"
}
],
"access_right_category": "success",
"creators": [
{
"name": "Arbash, Elias",
"affiliation": "Helmholtz Institute Freiberg",
"orcid": "0009-0000-2187-9171"
},
{
"name": "de Lima Ribeiro, Andrea",
"affiliation": "Helmholtz Institute Freiberg",
"orcid": "0000-0003-0096-3627"
},
{
"name": "Rizaldy, Aldino",
"affiliation": "Helmholtz Institute Freiberg",
"orcid": "0009-0004-4138-7878"
},
{
"name": "Fuchs, Margret",
"affiliation": "Helmholtz Institute Freiberg",
"orcid": "0000-0001-7210-1132"
},
{
"name": "Ghamisi, Pedram",
"affiliation": "Helmholtz Institute Freiberg",
"orcid": "0000-0003-1203-741X"
},
{
"name": "Scheunders, Paul",
"affiliation": "University of Antwerp",
"orcid": "0000-0003-2447-4772"
},
{
"name": "Gloaguen, Richard",
"affiliation": "Helmholtz Institute Freiberg",
"orcid": "0000-0002-4383-473X"
}
],
"keywords": [
"Hyperspectral Image Classification",
"Plastic",
"Polymers",
"E-waste",
"Deep Learning",
"Machine Learning"
],
"publication_date": "2024-12-08",
"license": {
"id": "CC-BY-4.0"
},
"description": "<p><strong>Investigating State of the Art Hyperspectral Imaging Classification Models for Plastic Types Identification</strong></p>\r\n\r\n<p><strong>Polymers Dataset</strong></p>\r\n\r\n<p>Description:</p>\r\n\r\n<p>The polymers dataset is a multiscene Hyperspectral benchmark dataset comprising of reference polymer samples and shredded polymer samples in the visible to short-wave infrared, capturing 450 bands within the [400\u20132500] nm range using an AisaFENIX (Spectral Imaging Ltd, Oulu, Finland) spectrometer.\u00a0</p>\r\n\r\n<p>Two sample batches were investigated:</p>\r\n\r\n<ul>\r\n <li>reference polymers of known composition and dimensions (15 X 10) cm, commonly found in e-waste.</li>\r\n <li>shredded pieces of polymers with sizes ranging from (0.3\u20134) cm.</li>\r\n</ul>\r\n\r\n<p><strong>Data Format</strong></p>\r\n\r\n<ul>\r\n <li>HSI data: each hyperspectral data cube is accompanied by a data file and a .hdr file.</li>\r\n <li>Ground truth mask: .png file (only for multi samples scenes)</li>\r\n</ul>\r\n\r\n<p><strong>Folder Organization</strong></p>\r\n\r\n<ul>\r\n <li>Polymers\r\n <ul>\r\n <li>Test\r\n <ul>\r\n <li>HSI:\u00a0.dat & .hdr</li>\r\n <li>Ground truth mask: test.png</li>\r\n <li>False colour representation of the scene: .png</li>\r\n </ul>\r\n </li>\r\n <li>Train\r\n <ul>\r\n <li>HSI_ : 3 different scans of reference samples scanned</li>\r\n <li>PC, PE, PET, PP: Hyperspectral cubes (11x11x450) .hdr & .dat</li>\r\n </ul>\r\n </li>\r\n </ul>\r\n </li>\r\n</ul>\r\n\r\n<p><strong>Data Classes in Masks</strong></p>\r\n\r\n<ul>\r\n <li>Masks contain 1 to 6 segmentation classes:\r\n <ul>\r\n <li>1: \"PP\"</li>\r\n <li>2: \"Black Plastic\"</li>\r\n <li>3: \"PVC\"</li>\r\n <li>4: \"PET\"</li>\r\n <li>5: \"ABS\"</li>\r\n <li>6: \"PE\"</li>\r\n </ul>\r\n </li>\r\n</ul>\r\n\r\n<p><strong>Code Repository</strong></p>\r\n\r\n<p>To facilitate reading and working with the data, Python codes are available on the GitHub repository:</p>\r\n\r\n<p>https://github.com/hifexplo</p>\r\n\r\n<p>https://github.com/Elias-Arbash</p>\r\n\r\n\r\n\r\n<p><strong>Citation</strong></p>\r\n\r\n<p>If you use this dataset, please cite the following article: (To be filled once published)</p>\r\n\r\n\r\n\r\n<p><strong>Contact</strong></p>\r\n\r\n<p>For further information or inquiries, please visit our website:</p>\r\n\r\n<p>https://www.iexplo.space/</p>\r\n\r\n<p>Contact Email: e.arbash@hzdr.de</p>",
"resource_type": {
"type": "dataset",
"title": "Dataset"
},
"doc_id": "1"
}
}
| All versions | This version | |
|---|---|---|
| Views | 338 | 338 |
| Downloads | 28 | 28 |
| Data volume | 15.2 GB | 15.2 GB |
| Unique views | 289 | 289 |
| Unique downloads | 25 | 25 |