Dataset Restricted Access
Völschow, Marcel; Buczek, P.; Carreno-Mosquera, P.; Mousavias, C.; Reganova, S.; Roldan-Rodriguez, E.; Steinbach, Peter; Strube, A.
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.14278/rodare.3137</identifier> <creators> <creator> <creatorName>Völschow, Marcel</creatorName> <givenName>Marcel</givenName> <familyName>Völschow</familyName> </creator> <creator> <creatorName>Buczek, P.</creatorName> <givenName>P.</givenName> <familyName>Buczek</familyName> </creator> <creator> <creatorName>Carreno-Mosquera, P.</creatorName> <givenName>P.</givenName> <familyName>Carreno-Mosquera</familyName> </creator> <creator> <creatorName>Mousavias, C.</creatorName> <givenName>C.</givenName> <familyName>Mousavias</familyName> </creator> <creator> <creatorName>Reganova, S.</creatorName> <givenName>S.</givenName> <familyName>Reganova</familyName> </creator> <creator> <creatorName>Roldan-Rodriguez, E.</creatorName> <givenName>E.</givenName> <familyName>Roldan-Rodriguez</familyName> </creator> <creator> <creatorName>Steinbach, Peter</creatorName> <givenName>Peter</givenName> <familyName>Steinbach</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-4974-230X</nameIdentifier> </creator> <creator> <creatorName>Strube, A.</creatorName> <givenName>A.</givenName> <familyName>Strube</familyName> </creator> </creators> <titles> <title>mlphys101 - Exploring the performance of Large-Language Models in multilingual undergraduate physics education</title> </titles> <publisher>Rodare</publisher> <publicationYear>2024</publicationYear> <subjects> <subject>machine learning</subject> <subject>deep learning</subject> <subject>large language models</subject> <subject>chatgpt</subject> <subject>blablador</subject> </subjects> <dates> <date dateType="Issued">2024-09-09</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Dataset"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/3137</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-39561</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.3136</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="info:eu-repo/semantics/restrictedAccess">Restricted Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Large-Language Models such as ChatGPT have the potential to revo-<br> lutionize academic teaching in physics in a similar way the electronic calculator,<br> the home computer or the internet did. AI models are patient, produce answers<br> tailored to a student’s needs and are accessible whenever needed. Those involved<br> in academic teaching are facing a number of questions: Just how reliable are pub-<br> licly accessible models in answering, how does the question’s language affect the<br> models’ performance and how well do the models perform with more difficult tasks<br> beyond retrieval? To adress these questions, we benchmark a number of publicly<br> available models on the mlphys101 dataset, a new set of 823 university level MC5<br> questions and answers released alongside this work. While the original questions<br> are in English, we employ GPT-4 to translate them into various other languages,<br> followed by revision and refinement by native speakers. Our findings indicate that<br> state-of-the-art models perform well on questions involving the replication of facts,<br> definitions, and basic concepts, but struggle with multi-step quantitative reason-<br> ing. This aligns with existing literature that highlights the challenges LLMs face<br> in mathematical and logical reasoning tasks. We conclude that the most advanced<br> current LLMs are a valuable addition to the academic curriculum and LLM pow-<br> ered translations are a viable method to increase the accessibility of materials, but<br> their utility for more difficult quantitative tasks remains limited.</p> <p>The dataset is available in English here only and will be removed, once the mlphys101 publication was accepted and released to the public.</p></description> <description descriptionType="Other">The dataset is available in English here only and will be removed, once the mlphys101 publication was accepted and released to the public.</description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 110 | 110 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 94 | 94 |
Unique downloads | 0 | 0 |