Dataset Restricted Access
Völschow, Marcel; Buczek, P.; Carreno-Mosquera, P.; Mousavias, C.; Reganova, S.; Roldan-Rodriguez, E.; Steinbach, Peter; Strube, A.
<?xml version='1.0' encoding='utf-8'?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:cnt="http://www.w3.org/2011/content#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#"> <rdf:Description rdf:about="https://doi.org/10.14278/rodare.3137"> <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/> <dct:type rdf:resource="http://purl.org/dc/dcmitype/Dataset"/> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.14278/rodare.3137</dct:identifier> <foaf:page rdf:resource="https://doi.org/10.14278/rodare.3137"/> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Völschow, Marcel</foaf:name> <foaf:givenName>Marcel</foaf:givenName> <foaf:familyName>Völschow</foaf:familyName> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Buczek, P.</foaf:name> <foaf:givenName>P.</foaf:givenName> <foaf:familyName>Buczek</foaf:familyName> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Carreno-Mosquera, P.</foaf:name> <foaf:givenName>P.</foaf:givenName> <foaf:familyName>Carreno-Mosquera</foaf:familyName> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Mousavias, C.</foaf:name> <foaf:givenName>C.</foaf:givenName> <foaf:familyName>Mousavias</foaf:familyName> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Reganova, S.</foaf:name> <foaf:givenName>S.</foaf:givenName> <foaf:familyName>Reganova</foaf:familyName> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Roldan-Rodriguez, E.</foaf:name> <foaf:givenName>E.</foaf:givenName> <foaf:familyName>Roldan-Rodriguez</foaf:familyName> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description rdf:about="http://orcid.org/0000-0002-4974-230X"> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Steinbach, Peter</foaf:name> <foaf:givenName>Peter</foaf:givenName> <foaf:familyName>Steinbach</foaf:familyName> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Strube, A.</foaf:name> <foaf:givenName>A.</foaf:givenName> <foaf:familyName>Strube</foaf:familyName> </rdf:Description> </dct:creator> <dct:title>mlphys101 - Exploring the performance of Large-Language Models in multilingual undergraduate physics education</dct:title> <dct:publisher> <foaf:Agent> <foaf:name>Rodare</foaf:name> </foaf:Agent> </dct:publisher> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2024</dct:issued> <dcat:keyword>machine learning</dcat:keyword> <dcat:keyword>deep learning</dcat:keyword> <dcat:keyword>large language models</dcat:keyword> <dcat:keyword>chatgpt</dcat:keyword> <dcat:keyword>blablador</dcat:keyword> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2024-09-09</dct:issued> <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/> <owl:sameAs rdf:resource="https://rodare.hzdr.de/record/3137"/> <adms:identifier> <adms:Identifier> <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://rodare.hzdr.de/record/3137</skos:notation> </adms:Identifier> </adms:identifier> <owl:sameAs rdf:resource="https://www.hzdr.de/publications/Publ-39561"/> <dct:isVersionOf rdf:resource="https://doi.org/10.14278/rodare.3136"/> <dct:isPartOf rdf:resource="https://rodare.hzdr.de/communities/rodare"/> <dct:description><p>Large-Language Models such as ChatGPT have the potential to revo-<br> lutionize academic teaching in physics in a similar way the electronic calculator,<br> the home computer or the internet did. AI models are patient, produce answers<br> tailored to a student’s needs and are accessible whenever needed. Those involved<br> in academic teaching are facing a number of questions: Just how reliable are pub-<br> licly accessible models in answering, how does the question’s language affect the<br> models’ performance and how well do the models perform with more difficult tasks<br> beyond retrieval? To adress these questions, we benchmark a number of publicly<br> available models on the mlphys101 dataset, a new set of 823 university level MC5<br> questions and answers released alongside this work. While the original questions<br> are in English, we employ GPT-4 to translate them into various other languages,<br> followed by revision and refinement by native speakers. Our findings indicate that<br> state-of-the-art models perform well on questions involving the replication of facts,<br> definitions, and basic concepts, but struggle with multi-step quantitative reason-<br> ing. This aligns with existing literature that highlights the challenges LLMs face<br> in mathematical and logical reasoning tasks. We conclude that the most advanced<br> current LLMs are a valuable addition to the academic curriculum and LLM pow-<br> ered translations are a viable method to increase the accessibility of materials, but<br> their utility for more difficult quantitative tasks remains limited.</p> <p>The dataset is available in English here only and will be removed, once the mlphys101 publication was accepted and released to the public.</p></dct:description> <dct:description xml:lang="">The dataset is available in English here only and will be removed, once the mlphys101 publication was accepted and released to the public.</dct:description> <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/RESTRICTED"/> <dct:accessRights> <dct:RightsStatement rdf:about="info:eu-repo/semantics/restrictedAccess"> <rdfs:label>Restricted Access</rdfs:label> </dct:RightsStatement> </dct:accessRights> <dcat:distribution> <dcat:Distribution> <dcat:accessURL rdf:resource="https://doi.org/10.14278/rodare.3137"/> </dcat:Distribution> </dcat:distribution> </rdf:Description> </rdf:RDF>
All versions | This version | |
---|---|---|
Views | 110 | 110 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 94 | 94 |
Unique downloads | 0 | 0 |