Dataset Open Access

2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma

Starke,Sebastian; Leger, Stefan; Zwanenburg, Alex; Leger, Karoline; Lohaus, Fabian; Linge, Annett; Schreiber, Andreas; Kalinauskaite, Goda; Tinhofer, Inge; Guberina, Nika; Guberina, Maja; Balermpas, Panagiotis; von der Grün, Jens; Ganswindt, Ute; Belka, Claus; Peeken, Jan C.; Combs, Stephanie E.; Böke, Simon; Zips, Daniel; Richter, Christian; Troost, Esther G.C.; Krause, Mechthild; Baumann, Michael; Löck, Steffen


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Starke,Sebastian</dc:creator>
  <dc:creator>Leger, Stefan</dc:creator>
  <dc:creator>Zwanenburg, Alex</dc:creator>
  <dc:creator>Leger, Karoline</dc:creator>
  <dc:creator>Lohaus, Fabian</dc:creator>
  <dc:creator>Linge, Annett</dc:creator>
  <dc:creator>Schreiber, Andreas</dc:creator>
  <dc:creator>Kalinauskaite, Goda</dc:creator>
  <dc:creator>Tinhofer, Inge</dc:creator>
  <dc:creator>Guberina, Nika</dc:creator>
  <dc:creator>Guberina, Maja</dc:creator>
  <dc:creator>Balermpas, Panagiotis</dc:creator>
  <dc:creator>von der Grün, Jens</dc:creator>
  <dc:creator>Ganswindt, Ute</dc:creator>
  <dc:creator>Belka, Claus</dc:creator>
  <dc:creator>Peeken, Jan C.</dc:creator>
  <dc:creator>Combs, Stephanie E.</dc:creator>
  <dc:creator>Böke, Simon</dc:creator>
  <dc:creator>Zips, Daniel</dc:creator>
  <dc:creator>Richter, Christian</dc:creator>
  <dc:creator>Troost, Esther G.C.</dc:creator>
  <dc:creator>Krause, Mechthild</dc:creator>
  <dc:creator>Baumann, Michael</dc:creator>
  <dc:creator>Löck, Steffen</dc:creator>
  <dc:date>2020-02-27</dc:date>
  <dc:description>These are the results from the analyses presented in a paper submitted to Scientific Reports.

The zip file contains the trained model files and the plots that were used in the manuscript.

Code for reproduction of our analyses can be obtained from https://github.com/oncoray/cnn-hnscc. There, you also find instructions on how to load our models.</dc:description>
  <dc:identifier>https://rodare.hzdr.de/record/255</dc:identifier>
  <dc:identifier>10.14278/rodare.255</dc:identifier>
  <dc:identifier>oai:rodare.hzdr.de:255</dc:identifier>
  <dc:relation>url:https://www.hzdr.de/publications/Publ-30759</dc:relation>
  <dc:relation>doi:10.14278/rodare.254</dc:relation>
  <dc:relation>url:https://rodare.hzdr.de/communities/health</dc:relation>
  <dc:relation>url:https://rodare.hzdr.de/communities/rodare</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by-nc/4.0/legalcode</dc:rights>
  <dc:subject>convolutional neural networks</dc:subject>
  <dc:subject>Keras</dc:subject>
  <dc:subject>Deep learning</dc:subject>
  <dc:subject>head and neck cancer</dc:subject>
  <dc:subject>loco-regional-recurrence</dc:subject>
  <dc:subject>Cox proportional hazards</dc:subject>
  <dc:title>2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma</dc:title>
  <dc:type>info:eu-repo/semantics/other</dc:type>
  <dc:type>dataset</dc:type>
</oai_dc:dc>
59
5
views
downloads
All versions This version
Views 5959
Downloads 55
Data volume 590.3 GB590.3 GB
Unique views 4343
Unique downloads 33

Share

Cite as