Dataset Open Access
Fiedler, Lenz;
Modine, Normand A.;
Miller, Kyle D.;
Cangi, Attila
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nmm##2200000uu#4500</leader>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.14278/rodare.2266</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="a">Fiedler, Lenz</subfield>
<subfield code="u">HZDR / CASUS</subfield>
<subfield code="0">(orcid)0000-0002-8311-0613</subfield>
</datafield>
<controlfield tag="001">2266</controlfield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Modine, Normand A.</subfield>
<subfield code="u">Sandia National Laboratories</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Miller, Kyle D.</subfield>
<subfield code="u">Sandia National Laboratories</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Cangi, Attila</subfield>
<subfield code="u">HZDR / CASUS</subfield>
<subfield code="0">(orcid)0000-0001-9162-262X</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
<subfield code="a">Creative Commons Attribution 4.0 International</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="7">
<subfield code="a">cc-by</subfield>
<subfield code="2">opendefinition.org</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="773" ind1=" " ind2=" ">
<subfield code="a">https://www.hzdr.de/publications/Publ-36845</subfield>
<subfield code="i">isIdenticalTo</subfield>
<subfield code="n">url</subfield>
</datafield>
<datafield tag="773" ind1=" " ind2=" ">
<subfield code="a">https://www.hzdr.de/publications/Publ-39797</subfield>
<subfield code="i">isReferencedBy</subfield>
<subfield code="n">url</subfield>
</datafield>
<datafield tag="773" ind1=" " ind2=" ">
<subfield code="a">https://www.hzdr.de/publications/Publ-37111</subfield>
<subfield code="i">isReferencedBy</subfield>
<subfield code="n">url</subfield>
</datafield>
<datafield tag="773" ind1=" " ind2=" ">
<subfield code="a">10.14278/rodare.2265</subfield>
<subfield code="i">isVersionOf</subfield>
<subfield code="n">doi</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">dataset</subfield>
</datafield>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="o">oai:rodare.hzdr.de:2266</subfield>
<subfield code="p">openaire_data</subfield>
<subfield code="p">user-rodare</subfield>
</datafield>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="s">5097731178</subfield>
<subfield code="u">https://rodare.hzdr.de/record/2266/files/ml_electronic_temperature_data.zip</subfield>
<subfield code="z">md5:1b21a1be318ae355556e9bf7d9d9acb2</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">user-rodare</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a"><pre><em># </em>Data and Scripts for &quot;Machine learning the electronic structure of matter across temperatures&quot;
This dataset contains data and calculation scripts for the publication &quot;Machine learning the electronic structure of matter across temperatures&quot;.
Its goal is to enable interested parties to reproduce the experiments we have carried out.
<em>## </em>Prerequesites
The following software versions are needed for the python scripts:
<em>- </em>`python`: 3.8.x
<em>- </em>`mala`: 1.2.0
<em>- </em>`numpy`: 1.23.0 (lower version may work)
Further, make sure you have downloaded additional data such as local pseudopotentials and training data.
<em>## </em>Contents
<em>- </em>`data_analysis/`: Contains scripts contain useful functions to reproduce the analysis carried out on the provided
data.
<em>- </em>`model_training/`: Contains scripts that allow the training and testing of the models discussed in the accompanying
publication.
<em>- </em>`trained_models`: Contains the models discussed in the accompanying publication. Per data set, five models with
different random initializations were trained.
</pre></subfield>
</datafield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2023-04-20</subfield>
</datafield>
<controlfield tag="005">20241024145832.0</controlfield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">Scripts and models for "Machine learning the electronic structure of matter across temperatures"</subfield>
</datafield>
</record>
| All versions | This version | |
|---|---|---|
| Views | 505 | 505 |
| Downloads | 33 | 33 |
| Data volume | 168.2 GB | 168.2 GB |
| Unique views | 470 | 470 |
| Unique downloads | 33 | 33 |