Dataset Open Access
Fiedler, Lenz;
Modine, Normand A.;
Miller, Kyle D.;
Cangi, Attila
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="DOI">10.14278/rodare.2266</identifier>
<creators>
<creator>
<creatorName>Fiedler, Lenz</creatorName>
<givenName>Lenz</givenName>
<familyName>Fiedler</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-8311-0613</nameIdentifier>
<affiliation>HZDR / CASUS</affiliation>
</creator>
<creator>
<creatorName>Modine, Normand A.</creatorName>
<givenName>Normand A.</givenName>
<familyName>Modine</familyName>
<affiliation>Sandia National Laboratories</affiliation>
</creator>
<creator>
<creatorName>Miller, Kyle D.</creatorName>
<givenName>Kyle D.</givenName>
<familyName>Miller</familyName>
<affiliation>Sandia National Laboratories</affiliation>
</creator>
<creator>
<creatorName>Cangi, Attila</creatorName>
<givenName>Attila</givenName>
<familyName>Cangi</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9162-262X</nameIdentifier>
<affiliation>HZDR / CASUS</affiliation>
</creator>
</creators>
<titles>
<title>Scripts and models for "Machine learning the electronic structure of matter across temperatures"</title>
</titles>
<publisher>Rodare</publisher>
<publicationYear>2023</publicationYear>
<dates>
<date dateType="Issued">2023-04-20</date>
</dates>
<resourceType resourceTypeGeneral="Dataset"/>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/2266</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-36845</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsReferencedBy">https://www.hzdr.de/publications/Publ-39797</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsReferencedBy">https://www.hzdr.de/publications/Publ-37111</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.2265</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier>
</relatedIdentifiers>
<version>v1.0.0</version>
<rightsList>
<rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><pre><em># </em>Data and Scripts for &quot;Machine learning the electronic structure of matter across temperatures&quot;
This dataset contains data and calculation scripts for the publication &quot;Machine learning the electronic structure of matter across temperatures&quot;.
Its goal is to enable interested parties to reproduce the experiments we have carried out.
<em>## </em>Prerequesites
The following software versions are needed for the python scripts:
<em>- </em>`python`: 3.8.x
<em>- </em>`mala`: 1.2.0
<em>- </em>`numpy`: 1.23.0 (lower version may work)
Further, make sure you have downloaded additional data such as local pseudopotentials and training data.
<em>## </em>Contents
<em>- </em>`data_analysis/`: Contains scripts contain useful functions to reproduce the analysis carried out on the provided
data.
<em>- </em>`model_training/`: Contains scripts that allow the training and testing of the models discussed in the accompanying
publication.
<em>- </em>`trained_models`: Contains the models discussed in the accompanying publication. Per data set, five models with
different random initializations were trained.
</pre></description>
</descriptions>
</resource>
| All versions | This version | |
|---|---|---|
| Views | 505 | 505 |
| Downloads | 33 | 33 |
| Data volume | 168.2 GB | 168.2 GB |
| Unique views | 470 | 470 |
| Unique downloads | 33 | 33 |