Dataset Open Access

Tinto: Multisensor Benchmark for 3D Hyperspectral Point Cloud Segmentation in the Geosciences

Afifi, Ahmed J. M.; Thiele, Samuel Thomas; Rizaldy, Aldino; Lorenz, Sandra; Kirsch, Moritz; Ghamisi, Pedram; Tolosana Delgado, Raimon; Gloaguen, Richard; Heizmann, Michael


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:cnt="http://www.w3.org/2011/content#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.14278/rodare.2256">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Dataset"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.14278/rodare.2256</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.14278/rodare.2256"/>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0001-6782-6753">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Afifi, Ahmed J. M.</foaf:name>
        <foaf:givenName>Ahmed J. M.</foaf:givenName>
        <foaf:familyName>Afifi</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz Institute Freiberg for Resource Technology (HIF), Karlsruhe Institute of Technology (KIT)</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0003-4169-0207">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Thiele, Samuel Thomas</foaf:name>
        <foaf:givenName>Samuel Thomas</foaf:givenName>
        <foaf:familyName>Thiele</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz Institute Freiberg for Resource Technology (HIF)</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Rizaldy, Aldino</foaf:name>
        <foaf:givenName>Aldino</foaf:givenName>
        <foaf:familyName>Rizaldy</foaf:familyName>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0001-8464-2331">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Lorenz, Sandra</foaf:name>
        <foaf:givenName>Sandra</foaf:givenName>
        <foaf:familyName>Lorenz</foaf:familyName>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0003-1512-5511">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Kirsch, Moritz</foaf:name>
        <foaf:givenName>Moritz</foaf:givenName>
        <foaf:familyName>Kirsch</foaf:familyName>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0003-1203-741X">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Ghamisi, Pedram</foaf:name>
        <foaf:givenName>Pedram</foaf:givenName>
        <foaf:familyName>Ghamisi</foaf:familyName>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0001-9847-0462">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Tolosana Delgado, Raimon</foaf:name>
        <foaf:givenName>Raimon</foaf:givenName>
        <foaf:familyName>Tolosana Delgado</foaf:familyName>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0002-4383-473X">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Gloaguen, Richard</foaf:name>
        <foaf:givenName>Richard</foaf:givenName>
        <foaf:familyName>Gloaguen</foaf:familyName>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0001-9339-2055">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Heizmann, Michael</foaf:name>
        <foaf:givenName>Michael</foaf:givenName>
        <foaf:familyName>Heizmann</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Karlsruhe Institute of Technology (KIT)</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Tinto: Multisensor Benchmark for 3D Hyperspectral Point Cloud Segmentation in the Geosciences</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Rodare</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2023</dct:issued>
    <dcat:keyword>point cloud</dcat:keyword>
    <dcat:keyword>hyperspectral</dcat:keyword>
    <dcat:keyword>hypercloud</dcat:keyword>
    <dcat:keyword>deep learning</dcat:keyword>
    <dcat:keyword>point cloud segmentation</dcat:keyword>
    <dcat:keyword>synthetic data</dcat:keyword>
    <dcat:keyword>digital outcrop</dcat:keyword>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2023-04-19</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://rodare.hzdr.de/record/2256"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://rodare.hzdr.de/record/2256</skos:notation>
      </adms:Identifier>
    </adms:identifier>
    <owl:sameAs rdf:resource="https://www.hzdr.de/publications/Publ-36833"/>
    <dct:isReferencedBy rdf:resource="https://www.hzdr.de/publications/Publ-38265"/>
    <dct:isVersionOf rdf:resource="https://doi.org/10.14278/rodare.2255"/>
    <dct:isPartOf rdf:resource="https://rodare.hzdr.de/communities/hzdr"/>
    <dct:isPartOf rdf:resource="https://rodare.hzdr.de/communities/rodare"/>
    <dct:description>&lt;p&gt;The increasing use of deep learning techniques has reduced interpretation time and, ideally, reduced interpreter bias by automatically deriving geological maps from digital outcrop models. However, accurate validation of these automated mapping approaches is a significant challenge due to the subjective nature of geological mapping and the difficulty in collecting quantitative validation data. Additionally, many state-of-the-art deep learning methods are limited to 2D image data, which is insufficient for 3D digital outcrops, such as hyperclouds. To address these challenges, we present Tinto, a multi-sensor benchmark digital outcrop dataset designed to facilitate the development and validation of deep learning approaches for geological mapping, especially for non-structured 3D data like point clouds. Tinto comprises two complementary sets: 1) a real digital outcrop model from Corta Atalaya (Spain), with spectral attributes and ground-truth data, and 2) a synthetic twin that uses latent features in the original datasets to reconstruct realistic spectral data (including sensor noise and processing artifacts) from the ground-truth. The point cloud is dense and contains  3,242,964 labeled points. We used these datasets to explore the abilities of different deep learning approaches for automated geological mapping. By making Tinto publicly available, we hope to foster the development and adaptation of new deep learning tools for 3D applications in Earth sciences.&lt;/p&gt;</dct:description>
    <dct:description xml:lang="">This research received funding from the Initiative and Networking Fund (INF) of the Hermann von Helmholtz Association of German Research Centres in the framework of the Helmholtz Imaging Platform under grant agreement No ZT-I-PF-4-021.</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:rights>
          <dct:RightsStatement rdf:about="https://creativecommons.org/licenses/by/4.0/legalcode">
            <rdfs:label>Creative Commons Attribution 4.0 International</rdfs:label>
          </dct:RightsStatement>
        </dct:rights>
        <dcat:accessURL rdf:resource="https://doi.org/10.14278/rodare.2256"/>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
1,665
801
views
downloads
All versions This version
Views 1,6651,665
Downloads 801801
Data volume 6.9 TB6.9 TB
Unique views 1,4041,404
Unique downloads 173173

Share

Cite as