Dataset Restricted Access

Data: Study of a possible silicon photomultiplier based readout of the large plastic scintillator neutron detector NeuLAND

Hensel, Thomas; Weinberger, David; Bemmerer, Daniel; Boretzky, Konstanze; Gasparic, Igor; Stach, Daniel; Wagner, Andreas; Zuber, Kai


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Hensel, Thomas</dc:creator>
  <dc:creator>Weinberger, David</dc:creator>
  <dc:creator>Bemmerer, Daniel</dc:creator>
  <dc:creator>Boretzky, Konstanze</dc:creator>
  <dc:creator>Gasparic, Igor</dc:creator>
  <dc:creator>Stach, Daniel</dc:creator>
  <dc:creator>Wagner, Andreas</dc:creator>
  <dc:creator>Zuber, Kai</dc:creator>
  <dc:date>2022-07-29</dc:date>
  <dc:description>The NeuLAND (New Large-Area Neutron Detector) plastic scintillator based time of flight detector for 0.2-1.6 GeV
neutrons is currently under construction at the Facility for Antiproton and Ion Research (FAIR), Darmstadt, Germany.
In its final configuration, NeuLAND will consist of 3,000 2.7 m long plastic scintillator bars that are read out on each
end by fast timing photomultipliers.
Here, data from a comprehensive study of an alternative light readout scheme using silicon photomultipliers (SiPM)
are reported.  For this purpose, a typical NeuLAND bar was instrumented on each end with a prototype of the same
geometry as a 1” photomultiplier tube, including four 6×6 mm2 SiPMs, amplifiers, high voltage supply, and micro-
controller.
Tests were carried out using the 35 MeV electron beam from the ELBE superconducting linac with its ps-level time jitter in two different modes of operation, namely parasitic mode with one electron per bunch and single-usermode with 1-60 electrons per bunch, using Acqiris fast digitizers. In addition, offline tests using cosmic rays and the NeuLAND data acquisition scheme were carried out.
Typical time resolutions of σ≤120 ps were found for ≥ 95% efficiency, improving on previous work at ELBE and exceeding the NeuLAND timing goal of σ &lt;150 ps. Over a range of 10-300 MeV deposited energy in the NeuLAND bar,  the  gain  was  found  to  deviate  by ≤ 10%  (≤20%)  from  linearity  for  35μm  (75μm)  SiPM  pitch,  respectively, satisfactory for calorimetric use of the full NeuLAND detector.  The dark rate of the prototype studied was found to
be 70-200 s-1, comparable with the unavoidable cosmic-ray induced background.

The dataset contains the with the Acqiris Digitzier recorded waveforms and analysis scripts for interpretation of the data. Also GEANT4 simulations of the light propagation in a NeuLAND bar and the electron beam propagation are included.</dc:description>
  <dc:identifier>https://rodare.hzdr.de/record/1822</dc:identifier>
  <dc:identifier>10.14278/rodare.1822</dc:identifier>
  <dc:identifier>oai:rodare.hzdr.de:1822</dc:identifier>
  <dc:language>eng</dc:language>
  <dc:relation>url:https://www.hzdr.de/publications/Publ-34981</dc:relation>
  <dc:relation>url:https://www.hzdr.de/publications/Publ-34940</dc:relation>
  <dc:relation>doi:10.14278/rodare.1821</dc:relation>
  <dc:relation>url:https://rodare.hzdr.de/communities/hzdr</dc:relation>
  <dc:relation>url:https://rodare.hzdr.de/communities/rodare</dc:relation>
  <dc:rights>info:eu-repo/semantics/restrictedAccess</dc:rights>
  <dc:subject>SiPM</dc:subject>
  <dc:subject>saturation</dc:subject>
  <dc:subject>NeuLAND</dc:subject>
  <dc:subject>dark rate</dc:subject>
  <dc:subject>electron beam</dc:subject>
  <dc:subject>timeresolution</dc:subject>
  <dc:title>Data: Study of a possible silicon photomultiplier based readout of the large plastic scintillator neutron detector NeuLAND</dc:title>
  <dc:type>info:eu-repo/semantics/other</dc:type>
  <dc:type>dataset</dc:type>
</oai_dc:dc>
679
0
views
downloads
All versions This version
Views 679679
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 129129
Unique downloads 00

Share

Cite as