Other Closed Access

Optimization of multi-group energy structures for diffusion analyses of sodium-cooled fast reactors assisted by simulated annealing – Part I: methodology demonstration

Di Nora, V. A.; Fridman, E.; Nikitin, E.; Bilodid, Y.; Mikityuk, K.


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Di Nora, V. A.</dc:creator>
  <dc:creator>Fridman, E.</dc:creator>
  <dc:creator>Nikitin, E.</dc:creator>
  <dc:creator>Bilodid, Y.</dc:creator>
  <dc:creator>Mikityuk, K.</dc:creator>
  <dc:date>2020-11-26</dc:date>
  <dc:description>This study presents an approach to the selection of optimal energy group structures for multi-group nodal diffusion analyses of Sodium-cooled Fast Reactor cores. The goal is to speed up calculations, particularly in transient calculations, while maintaining an acceptable accuracy of the results.
In Part I of the paper, possible time-savings due to collapsing of energy groups are evaluated using 24-group energy structure as a reference. Afterwards, focusing on energy structures with a number of groups leading to significant calculation speedups, optimal grid configurations are identified. Depending on a number of possible energy grid configurations to explore, the optimization is conducted by either a direct search or applying the simulated annealing method. Speedup and optimization studies are performed on a selected case of the Superphénix static neutronic benchmark by using the nodal diffusion DYN3D code. The results demonstrate noticeable improvements in DYN3D performance with a marginal deterioration of the accuracy.</dc:description>
  <dc:identifier>https://rodare.hzdr.de/record/584</dc:identifier>
  <dc:identifier>10.14278/rodare.584</dc:identifier>
  <dc:identifier>oai:rodare.hzdr.de:584</dc:identifier>
  <dc:relation>doi:10.1016/j.anucene.2021.108183</dc:relation>
  <dc:relation>url:https://www.hzdr.de/publications/Publ-31706</dc:relation>
  <dc:relation>url:https://www.hzdr.de/publications/Publ-31688</dc:relation>
  <dc:relation>url:https://www.hzdr.de/publications/Publ-32640</dc:relation>
  <dc:relation>doi:10.14278/rodare.583</dc:relation>
  <dc:relation>url:https://rodare.hzdr.de/communities/hzdr</dc:relation>
  <dc:relation>url:https://rodare.hzdr.de/communities/rodare</dc:relation>
  <dc:rights>info:eu-repo/semantics/closedAccess</dc:rights>
  <dc:subject>Serpent</dc:subject>
  <dc:subject>XS condensation</dc:subject>
  <dc:subject>energy structure optimization</dc:subject>
  <dc:subject>simulated annealing</dc:subject>
  <dc:title>Optimization of multi-group energy structures for diffusion analyses of sodium-cooled fast reactors assisted by simulated annealing – Part I: methodology demonstration</dc:title>
  <dc:type>info:eu-repo/semantics/other</dc:type>
  <dc:type>other</dc:type>
</oai_dc:dc>
395
0
views
downloads
All versions This version
Views 395395
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 324324
Unique downloads 00

Share

Cite as