There is a newer version of this record available.

Other Open Access

Interactive results viewer: Computing single-particle flotation kinetics using automated mineralogy data and machine learning

Pereira, Lucas; Frenzel, Max; Hoang, Duong Huu; Tolosana-Delgado, Raimon; Rudolph, Martin; Gutzmer, Jens


JSON Export

{
  "stats": {
    "volume": 644.0, 
    "unique_downloads": 14.0, 
    "version_unique_downloads": 18.0, 
    "unique_views": 127.0, 
    "downloads": 14.0, 
    "version_unique_views": 177.0, 
    "version_views": 236.0, 
    "version_downloads": 18.0, 
    "version_volume": 832.0, 
    "views": 158.0
  }, 
  "created": "2020-10-06T13:31:13.437226+00:00", 
  "files": [
    {
      "size": 46, 
      "checksum": "md5:7276df6dd58574007921b0925b153d07", 
      "type": "txt", 
      "key": "Platform link.txt", 
      "links": {
        "self": "https://rodare.hzdr.de/api/files/348e28df-8dc2-4eb8-9c06-bad390c1fffd/Platform%20link.txt"
      }, 
      "bucket": "348e28df-8dc2-4eb8-9c06-bad390c1fffd"
    }
  ], 
  "doi": "10.14278/rodare.536", 
  "id": 536, 
  "conceptrecid": "535", 
  "owners": [
    102
  ], 
  "links": {
    "badge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.536.svg", 
    "doi": "https://doi.org/10.14278/rodare.536", 
    "conceptbadge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.535.svg", 
    "conceptdoi": "https://doi.org/10.14278/rodare.535", 
    "bucket": "https://rodare.hzdr.de/api/files/348e28df-8dc2-4eb8-9c06-bad390c1fffd", 
    "html": "https://rodare.hzdr.de/record/536", 
    "latest": "https://rodare.hzdr.de/api/records/920", 
    "latest_html": "https://rodare.hzdr.de/record/920"
  }, 
  "conceptdoi": "10.14278/rodare.535", 
  "updated": "2021-04-08T12:58:16.978327+00:00", 
  "metadata": {
    "resource_type": {
      "type": "other", 
      "title": "Other"
    }, 
    "related_identifiers": [
      {
        "identifier": "10.31223/osf.io/5tghq", 
        "relation": "isCitedBy", 
        "scheme": "doi"
      }, 
      {
        "identifier": "https://www.hzdr.de/publications/Publ-31588", 
        "relation": "isIdenticalTo", 
        "scheme": "url"
      }, 
      {
        "identifier": "10.14278/rodare.535", 
        "relation": "isVersionOf", 
        "scheme": "doi"
      }
    ], 
    "communities": [
      {
        "id": "energy"
      }, 
      {
        "id": "rodare"
      }
    ], 
    "references": [
      "https://doi.org/10.31223/osf.io/5tghq"
    ], 
    "access_right_category": "success", 
    "access_right": "open", 
    "doc_id": "1", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "creators": [
      {
        "orcid": "0000-0001-8041-5406", 
        "affiliation": "FWGA", 
        "name": "Pereira, Lucas"
      }, 
      {
        "orcid": "0000-0001-6625-559X", 
        "affiliation": "FWGA", 
        "name": "Frenzel, Max"
      }, 
      {
        "orcid": "0000-0002-2320-7210", 
        "affiliation": "FWGP", 
        "name": "Hoang, Duong Huu"
      }, 
      {
        "orcid": "0000-0001-9847-0462", 
        "affiliation": "FWGB", 
        "name": "Tolosana-Delgado, Raimon"
      }, 
      {
        "orcid": "0000-0002-5374-6135", 
        "affiliation": "FWGP", 
        "name": "Rudolph, Martin"
      }, 
      {
        "orcid": "0000-0002-1034-6545", 
        "affiliation": "FWGA", 
        "name": "Gutzmer, Jens"
      }
    ], 
    "language": "eng", 
    "version": "1", 
    "relations": {
      "version": [
        {
          "index": 0, 
          "count": 2, 
          "last_child": {
            "pid_value": "920", 
            "pid_type": "recid"
          }, 
          "is_last": false, 
          "parent": {
            "pid_value": "535", 
            "pid_type": "recid"
          }
        }
      ]
    }, 
    "title": "Interactive results viewer: Computing single-particle flotation kinetics using automated mineralogy data and machine learning", 
    "description": "<p>This plotting application allows the reader to interact with all results obtained in the case study presented in the publication</p>\n\n<p>&quot;Computing single-particle flotation kinetics using automated mineralogy data and machine learning&quot;, submitted on 07/10/2020 to Minerals Engineering and currently under review.</p>\n\n<p>The interactive plot displays the flotation kinetics modelling outcome (<em>k, R<sub>max</sub>, k<sub>m</sub></em>) for single-particles. The user is able to filter particles according to their intrinsic properties (modal composition, surface composition, size, and shape), thus allowing the user to understand the influence of every particle property in their process (i.e. flotation) behavior.</p>\n\n<p>The platform contains a help function to guide the user.</p>\n\n<p>It can be accessed here: <a href=\"https://webapp.ufz.de/pereiraetal2021kinetics/\">Pereira et al. 2021 Flotation kinetics platform.</a></p>", 
    "pub_id": "31588", 
    "doi": "10.14278/rodare.536", 
    "keywords": [
      "Geometallurgy", 
      "Particle-tracking", 
      "Froth flotation", 
      "Automated mineralogy"
    ], 
    "publication_date": "2020-10-06"
  }, 
  "revision": 8
}
236
18
views
downloads
All versions This version
Views 236158
Downloads 1814
Data volume 832 Bytes644 Bytes
Unique views 177127
Unique downloads 1814

Share

Cite as