Dataset Open Access

Data for: Lattice dynamics and ultrafast energy flow between electrons, spins, and phonons in a 3d ferromagnet

Zahn, Daniela; Jakobs, Florian; William Windsor, Yoav; Seiler, Helene; Vasileiadis, Thomas; Butcher, Tim A.; Qi, Yingpeng; Engel, Dieter; Atxitia, Unai; Vorberger, Jan; Ernstorfer, Ralph


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.14278/rodare.501</identifier>
  <creators>
    <creator>
      <creatorName>Zahn, Daniela</creatorName>
      <givenName>Daniela</givenName>
      <familyName>Zahn</familyName>
      <affiliation>Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Jakobs, Florian</creatorName>
      <givenName>Florian</givenName>
      <familyName>Jakobs</familyName>
      <affiliation>Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>William Windsor, Yoav</creatorName>
      <givenName>Yoav</givenName>
      <familyName>William Windsor</familyName>
      <affiliation>Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Seiler, Helene</creatorName>
      <givenName>Helene</givenName>
      <familyName>Seiler</familyName>
      <affiliation>Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Vasileiadis, Thomas</creatorName>
      <givenName>Thomas</givenName>
      <familyName>Vasileiadis</familyName>
      <affiliation>Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Butcher, Tim A.</creatorName>
      <givenName>Tim A.</givenName>
      <familyName>Butcher</familyName>
      <affiliation>School of Physics, Trinity College, Dublin 2, Ireland</affiliation>
    </creator>
    <creator>
      <creatorName>Qi, Yingpeng</creatorName>
      <givenName>Yingpeng</givenName>
      <familyName>Qi</familyName>
      <affiliation>Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Engel, Dieter</creatorName>
      <givenName>Dieter</givenName>
      <familyName>Engel</familyName>
      <affiliation>Max-Born-Institut, Max-Born-Straße 2A, 12489 Berlin, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Atxitia, Unai</creatorName>
      <givenName>Unai</givenName>
      <familyName>Atxitia</familyName>
      <affiliation>Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Vorberger, Jan</creatorName>
      <givenName>Jan</givenName>
      <familyName>Vorberger</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5926-9192</nameIdentifier>
    </creator>
    <creator>
      <creatorName>Ernstorfer, Ralph</creatorName>
      <givenName>Ralph</givenName>
      <familyName>Ernstorfer</familyName>
      <affiliation>Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Data for: Lattice dynamics and ultrafast energy flow between electrons, spins, and phonons in a 3d ferromagnet</title>
  </titles>
  <publisher>Rodare</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>magnetization</subject>
    <subject>relaxation</subject>
    <subject>laser</subject>
    <subject>phonon</subject>
    <subject>spin</subject>
    <subject>DFT</subject>
    <subject>electron beam</subject>
    <subject>femtosecond</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-09-03</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/501</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsSupplementTo">https://www.hzdr.de/publications/Publ-31385</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-31495</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.500</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The ultrafast dynamics of magnetic order in a ferromagnet are governed by the interplay between electronic, magnetic and lattice degrees of freedom. In order to obtain a microscopic understanding of ultrafast demagnetization, information on the response of all three subsystems is required. A consistent description of demagnetization and microscopic energy flow, however, is still missing. Here, we combine a femtosecond electron diffraction study of the ultrafast lattice response of nickel to laser excitation with ab initio calculations of the electron-phonon interaction and energy conserving atomistic spin dynamics simulations. Our model is in agreement with the observed lattice dynamics and previously reported electron and magnetization dynamics. Our approach reveals that the spin system is the dominating heat sink in the initial few hundreds of femtoseconds and implies a transient non-thermal state of the spins. Our results provide a clear picture of the microscopic energy flow between electronic, magnetic and lattice degrees of freedom on ultrafast timescales and constitute a foundation for theoretical descriptions of demagnetization that are consistent with the dynamics of all three subsystems.&lt;/p&gt;</description>
  </descriptions>
</resource>
22
0
views
downloads
All versions This version
Views 2222
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 1616
Unique downloads 00

Share

Cite as