Dataset Open Access

Data publication: Data publication: Scalable Machine Learning Model for Energy Decomposition Analysis in Aqueous Systems

Tahmasbi, Hossein; Beerbaum, Michael; Brzoza, Bartosz; Cangi, Attila; Kühne, Thomas Dae-Song


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Tahmasbi, Hossein</dc:creator>
  <dc:creator>Beerbaum, Michael</dc:creator>
  <dc:creator>Brzoza, Bartosz</dc:creator>
  <dc:creator>Cangi, Attila</dc:creator>
  <dc:creator>Kühne, Thomas Dae-Song</dc:creator>
  <dc:date>2025-12-02</dc:date>
  <dc:description>You can find the Python scripts we developed to train a neural network model to predict the electron delocalization energies of water molecules here. The training datasets are not included but can be provided upon reasonable request.</dc:description>
  <dc:identifier>https://rodare.hzdr.de/record/4170</dc:identifier>
  <dc:identifier>10.14278/rodare.4170</dc:identifier>
  <dc:identifier>oai:rodare.hzdr.de:4170</dc:identifier>
  <dc:relation>url:https://www.hzdr.de/publications/Publ-42346</dc:relation>
  <dc:relation>url:https://www.hzdr.de/publications/Publ-41905</dc:relation>
  <dc:relation>doi:10.14278/rodare.4169</dc:relation>
  <dc:relation>url:https://rodare.hzdr.de/communities/rodare</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:title>Data publication: Data publication: Scalable Machine Learning Model for Energy Decomposition Analysis in Aqueous Systems</dc:title>
  <dc:type>info:eu-repo/semantics/other</dc:type>
  <dc:type>dataset</dc:type>
</oai_dc:dc>
0
0
views
downloads
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00

Share

Cite as