Dataset Open Access
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="DOI">10.14278/rodare.3746</identifier>
<creators>
<creator>
<creatorName>Fiedler, Lenz</creatorName>
<givenName>Lenz</givenName>
<familyName>Fiedler</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-8311-0613</nameIdentifier>
<affiliation>HZDR</affiliation>
</creator>
<creator>
<creatorName>Cangi, Attila</creatorName>
<givenName>Attila</givenName>
<familyName>Cangi</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9162-262X</nameIdentifier>
<affiliation>HZDR</affiliation>
</creator>
</creators>
<titles>
<title>Boron data set for machine learning applications</title>
</titles>
<publisher>Rodare</publisher>
<publicationYear>2025</publicationYear>
<dates>
<date dateType="Issued">2025-05-14</date>
</dates>
<resourceType resourceTypeGeneral="Dataset"/>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/3746</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-41336</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsReferencedBy">https://www.hzdr.de/publications/Publ-40059</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.3745</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier>
</relatedIdentifiers>
<version>v1.0.0</version>
<rightsList>
<rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p><strong>Boron data set for machine learning applications</strong></p>
<p>This dataset contains DFT inputs, outputs, LDOS data and bispectrum descriptor vectors for an &alpha;-rhombohedral boron cell of 144 atoms at room temperature and ambient mass density. All simulations have been performed at an LDOS converged k-grid of 4x4x4 k-points.</p>
<p>This dataset contains one .zip file for each of its five type of data (bispectrum descriptors, LDOS, DFT inputs, DFT outputs and trained models).</p>
<p><em>Authors:</em></p>
<p>- Fiedler, Lenz (HZDR / CASUS)<br>
- Cangi, Attila (HZDR / CASUS)</p>
<p>Affiliations<em>:</em></p>
<p>HZDR - Helmholtz-Zentrum Dresden-Rossendorf<br>
CASUS - Center for Advanced Systems Understanding</p>
<p><em>Dataset description</em></p>
<p>- Total size: 26 GB<br>
- System: B144<br>
- Temperature(s): 298K<br>
- Mass density(ies): 2.483 gcc<br>
- Crystal Structure: amorphous (material mp-160 in the materials project)<br>
- Number of atomic snapshots: 15<br>
- Contents:<br>
&nbsp;&nbsp;&nbsp; - ideal crystal structure: no<br>
&nbsp;&nbsp;&nbsp; - MD trajectory: no<br>
&nbsp;&nbsp;&nbsp; - Atomic positions: no<br>
&nbsp;&nbsp;&nbsp; - DFT inputs: yes<br>
&nbsp;&nbsp;&nbsp; - DFT outputs (energies): yes<br>
&nbsp;&nbsp;&nbsp; - SNAP vectors: yes<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; - dimensions: 108x108x35x94 (last dimension: first three entries are x,y,z coordinates, data size is 91)<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; - units: a.u.<br>
&nbsp;&nbsp;&nbsp; - LDOS vectors: yes<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; - dimensions: 108x108x35x241<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; - units: 1/(eV*Angstrom^3)<br>
&nbsp;&nbsp;&nbsp; - trained networks: yes</p>
<p><br>
<em>Dataset structure</em></p>
<p>A .zip file is included for each for each of its five type of data:</p>
<p>- ldos.zip: holds the LDOS vectors (one HDF5 file per snapshot)<br>
- bispectrum.zip: holds the bispectrum fingerprint vectors&nbsp; (one HDF5 file per snapshot)<br>
- dft_outputs: holds the outputs from the DFT calculations, i.e. energies and simulation parameters in a .json format (one per snapshot)<br>
- dft_inputs: holds the inputs for the DFT calculations, in the form of a QE input file (one per snapshot)<br>
- models: holds five trained NN models for the data set</p></description>
</descriptions>
</resource>
| All versions | This version | |
|---|---|---|
| Views | 262 | 262 |
| Downloads | 41 | 41 |
| Data volume | 213.3 GB | 213.3 GB |
| Unique views | 238 | 238 |
| Unique downloads | 25 | 25 |