Software Open Access
Hessenkemper, Hendrik;
Wang, Lantian;
Lucas, Dirk;
Shiyong, Tan;
Rui, Ni;
Ma, Tian
{ "links": { "badge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.3419.svg", "doi": "https://doi.org/10.14278/rodare.3419", "conceptbadge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.2810.svg", "conceptdoi": "https://doi.org/10.14278/rodare.2810", "bucket": "https://rodare.hzdr.de/api/files/45aa948c-3afe-42ad-891d-8810d466d98c", "html": "https://rodare.hzdr.de/record/3419", "latest": "https://rodare.hzdr.de/api/records/3419", "latest_html": "https://rodare.hzdr.de/record/3419" }, "metadata": { "publication_date": "2024-04-17", "description": "<p>This package contains the software and the trained models described in the publication "<a href=\"https://www.sciencedirect.com/science/article/pii/S030193222400209X\">3D detection and tracking of deformable bubbles in swarms with the aid of deep learning models</a>". Please refer to the README.md for installation instructions and to the Tracking3D_demo.ipynb for usage demonstration.</p>\n\n<p><strong>Update</strong></p>\n\n<p>Minor bug fixes.</p>\n\n<p>The code now also provides the option for extended tracking using temporal information from 2D tracks.</p>", "pub_id": "38982", "license": { "id": "CC-BY-4.0" }, "keywords": [ "3D Lagrangian bubble tracking", "Bubble swarms", "Deformable bubbles", "Deep learning" ], "resource_type": { "title": "Software", "type": "software" }, "title": "Software publication: 3D detection and tracking of deformable bubbles in swarms with the aid of deep learning models", "doc_id": "1", "relations": { "version": [ { "count": 2, "last_child": { "pid_value": "3419", "pid_type": "recid" }, "index": 1, "is_last": true, "parent": { "pid_value": "2810", "pid_type": "recid" } } ] }, "creators": [ { "orcid": "0000-0002-2588-694X", "name": "Hessenkemper, Hendrik" }, { "name": "Wang, Lantian" }, { "orcid": "0000-0003-0463-2278", "name": "Lucas, Dirk" }, { "name": "Shiyong, Tan", "affiliation": "Johns Hopkins University, Department of Mechanical Engineering, Baltimore" }, { "name": "Rui, Ni", "affiliation": "Johns Hopkins University, Department of Mechanical Engineering, Baltimore" }, { "name": "Ma, Tian" } ], "related_identifiers": [ { "identifier": "10.1016/j.ijmultiphaseflow.2024.104932", "relation": "isReferencedBy", "scheme": "doi" }, { "identifier": "https://www.hzdr.de/publications/Publ-38982", "relation": "isIdenticalTo", "scheme": "url" }, { "identifier": "https://www.hzdr.de/publications/Publ-38980", "relation": "isReferencedBy", "scheme": "url" }, { "identifier": "https://www.hzdr.de/publications/Publ-40163", "relation": "isReferencedBy", "scheme": "url" }, { "identifier": "10.14278/rodare.2810", "relation": "isVersionOf", "scheme": "doi" } ], "doi": "10.14278/rodare.3419", "access_right": "open", "communities": [ { "id": "energy" }, { "id": "fwd" }, { "id": "rodare" } ], "access_right_category": "success" }, "conceptrecid": "2810", "revision": 3, "stats": { "volume": 268119200.0, "unique_downloads": 5.0, "version_unique_downloads": 29.0, "unique_views": 132.0, "downloads": 5.0, "version_unique_views": 520.0, "version_views": 635.0, "version_downloads": 29.0, "version_volume": 1496538992.0, "views": 164.0 }, "files": [ { "size": 53623840, "checksum": "md5:65b2447d3d56c7c8c2b41e4f563909c2", "links": { "self": "https://rodare.hzdr.de/api/files/45aa948c-3afe-42ad-891d-8810d466d98c/3d-bubble-tracking.zip" }, "bucket": "45aa948c-3afe-42ad-891d-8810d466d98c", "key": "3d-bubble-tracking.zip", "type": "zip" } ], "updated": "2025-02-19T08:19:34.476675+00:00", "id": 3419, "created": "2025-01-21T09:07:39.984545+00:00", "doi": "10.14278/rodare.3419", "conceptdoi": "10.14278/rodare.2810", "owners": [ 179 ] }
All versions | This version | |
---|---|---|
Views | 635 | 164 |
Downloads | 29 | 5 |
Data volume | 1.5 GB | 268.1 MB |
Unique views | 520 | 132 |
Unique downloads | 29 | 5 |
Hessenkemper, Hendrik, Wang, Lantian, Lucas, Dirk, Shiyong, Tan, Rui, Ni, & Ma, Tian. (2024, April 17). Software publication: 3D detection and tracking of deformable bubbles in swarms with the aid of deep learning models. Rodare. http://doi.org/10.14278/rodare.3419