Software Open Access

Self-folding of two-dimensional thin templates into pyramidal micro-structures by a liquid drop - a numerical model

Lecrivain, Gregory


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.14278/rodare.3034</identifier>
  <creators>
    <creator>
      <creatorName>Lecrivain, Gregory</creatorName>
      <givenName>Gregory</givenName>
      <familyName>Lecrivain</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-0540-3426</nameIdentifier>
      <affiliation>Helmholtz-Zentrum Dresden-Rossendorf</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Self-folding of two-dimensional thin templates into pyramidal micro-structures by a liquid drop - a numerical model</title>
  </titles>
  <publisher>Rodare</publisher>
  <publicationYear>2024</publicationYear>
  <subjects>
    <subject>Micro-origami simulation</subject>
    <subject>Drop encapsulation</subject>
    <subject>Self-folding</subject>
    <subject>Fluid-structure interaction</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2024-07-01</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Software"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/3034</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-37084</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsReferencedBy">https://www.hzdr.de/publications/Publ-37083</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.2325</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/energy</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/fwd</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier>
  </relatedIdentifiers>
  <version>1.1</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Source files and selected raw data related to the manuscript &amp;quot;Self-folding of two-dimensional thin templates into pyramidal micro-structures by a liquid drop - a numerical model&amp;quot; by Gregory Lecrivain, Helmholtz-Zentrum Dresden-Rossendorf, Germany, 2024.&lt;/p&gt;

&lt;p&gt;1) folder &amp;quot;manuscript&amp;quot;,&lt;br&gt;
This folder contains all text documents related to manuscript. Text and final figures are found in the directory.&lt;/p&gt;

&lt;p&gt;2) folder &amp;quot;scripts&amp;quot;&lt;br&gt;
This folder contains python and bash scripts used to post-process the raw data and prepare the figures. You will need to install some python3 libraries. Use the following command: pip install pyquaternion matplotlib scipy intersect.&lt;/p&gt;

&lt;p&gt;3) folder &amp;quot;figures&amp;quot;&lt;br&gt;
This folder contain information on how to run the simulations related to the figure. More information can be found in the README text file located in each figure/figX subfolder, where X the figure number in the manuscript.&lt;/p&gt;

&lt;p&gt;4) folder &amp;quot;src&amp;quot;&lt;br&gt;
This folder contains the all c++ files related to the source code.&lt;/p&gt;

&lt;p&gt;4.1)&lt;br&gt;
Prior to compiling, you should have gcc(7.3.0), openmpi(2.1.2), make(4.3), cmake(3.20.2), python(3.8.0), blas(3.8.0), lapack(3.8.0), boost(1.78.0), and git(2.30.1) available on your machine. The version number in the parenthesis corresponds to the one I used on the local HPC available at my institution. In my case, I type &amp;quot;module load gcc/7.3.0 openmpi/2.1.2 make/4.3 cmake/3.20.2 python/3.8.0 blas/3.8.0 lapack/3.8.0 boost/1.78.0 git/2.30.1&amp;quot;.&lt;/p&gt;

&lt;p&gt;4.2)&lt;br&gt;
To compile the libraries, open a terminal, cd to the src directory and type &amp;quot;make libs&amp;quot;. All outputs will placed in the folder $HOME/local. The libraries&amp;#39; tarballs needed to compile the code are placed in the Libs directory.&lt;/p&gt;

&lt;p&gt;4.3)&lt;br&gt;
I have manually installed paraview 5.9.1. pvpython is used to export txt data (hinge, drop and three-phase contact line) to vtk format.&lt;/p&gt;

&lt;p&gt;4.4)&lt;br&gt;
Open your ~/.bashrc file and add the following lines.&lt;br&gt;
export IGL_NUM_THREADS=1&lt;br&gt;
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/local/libconfig-1.7.3/lib&lt;br&gt;
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/local/gmp-6.2.1/lib&lt;br&gt;
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/local/mpfr-4.1.0/lib&lt;br&gt;
export PATH=$PATH:$HOME/microorigami/src #(or whereever, your chosen parent directory is)&lt;br&gt;
export PATH=$PATH:$HOME/microorigami/scripts #(or whereever, your chosen parent directory is)&lt;br&gt;
export PATH=$PATH:$HOME/microorigami/paraview/bin #(or whatever path you used)&lt;/p&gt;

&lt;p&gt;4.5)&lt;br&gt;
open a new terminal, cd to the src directory and type &amp;quot;make check_library_path&amp;quot;. The terminal should return&lt;br&gt;
&amp;quot;library path to libconfig is correct&amp;quot;&lt;br&gt;
&amp;quot;library path to gmp is correct&amp;quot;&lt;br&gt;
&amp;quot;library path to mpfr is correct&amp;quot;&lt;br&gt;
If that is the case, i.e. the paths are correctly set. To compile, type &amp;quot;make main post&amp;quot;. Alternatively, one can speed up the installation by typing &amp;quot;make -j 4 main post&amp;quot;, where 4 is the number of cpus I use.&lt;/p&gt;

&lt;p&gt;4.6)&lt;br&gt;
Help is available in each header file (.h) in the form of doxygen comments. Type &amp;quot;make doxy&amp;quot;. The folder html will appear under src.&lt;/p&gt;

&lt;p&gt;4.7)&lt;br&gt;
Type &amp;quot;make clean&amp;quot; to clean the src folder&lt;/p&gt;

&lt;p&gt;5) folders &amp;quot;caX_sideY_ecZ.zip&amp;quot;&lt;br&gt;
The zip files contains the raw data related to Figure 10. Here, X = 70 is the contact angle, Y = 5 the number of side panels and Z = 0.8, 1.6 and 2.4 the elasto-capillary number. After data extraction, three folders will be created, namely wd/ca70/side5/ec0.8, wd/ca70/side5/ec1.6 and wd/ca70/side5/ec2.4, where wd is your working directory. To convert the data into human-readable format (txt, vtk, stl,...) type &amp;quot;source Utils.sh; ExportScript --verbose --submit&amp;quot; in the working directory wd on the hpc. The bash function ExportScript is located in &amp;quot;scripts/Utils.sh&amp;quot;. All other raw data can be obtained by following the commands in the README text file located in each figX folder, with X=1,2,...,13. With Paraview, one is able to visualize the self-folding by loading the stl files.&lt;/p&gt;</description>
  </descriptions>
</resource>
585
238
views
downloads
All versions This version
Views 58548
Downloads 23816
Data volume 573.8 GB71.5 GB
Unique views 42544
Unique downloads 13014

Share

Cite as