There is a newer version of this record available.

Software Open Access

Self-folding of two-dimensional thin templates into pyramidal micro-structures by a liquid drop - a numerical model

Lecrivain, Gregory


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:cnt="http://www.w3.org/2011/content#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.14278/rodare.3033">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Software"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.14278/rodare.3033</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.14278/rodare.3033"/>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0003-0540-3426">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Lecrivain, Gregory</foaf:name>
        <foaf:givenName>Gregory</foaf:givenName>
        <foaf:familyName>Lecrivain</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Helmholtz-Zentrum Dresden-Rossendorf</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Self-folding of two-dimensional thin templates into pyramidal micro-structures by a liquid drop - a numerical model</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Rodare</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2024</dct:issued>
    <dcat:keyword>Micro-origami simulation</dcat:keyword>
    <dcat:keyword>Drop encapsulation</dcat:keyword>
    <dcat:keyword>Self-folding</dcat:keyword>
    <dcat:keyword>Fluid-structure interaction</dcat:keyword>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2024-06-28</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://rodare.hzdr.de/record/3033"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://rodare.hzdr.de/record/3033</skos:notation>
      </adms:Identifier>
    </adms:identifier>
    <owl:sameAs rdf:resource="https://www.hzdr.de/publications/Publ-37084"/>
    <dct:isReferencedBy rdf:resource="https://www.hzdr.de/publications/Publ-37083"/>
    <dct:isVersionOf rdf:resource="https://doi.org/10.14278/rodare.2325"/>
    <dct:isPartOf rdf:resource="https://rodare.hzdr.de/communities/energy"/>
    <dct:isPartOf rdf:resource="https://rodare.hzdr.de/communities/fwd"/>
    <dct:isPartOf rdf:resource="https://rodare.hzdr.de/communities/rodare"/>
    <owl:versionInfo>1.1</owl:versionInfo>
    <dct:description>&lt;p&gt;Source files and selected raw data related to the manuscript &amp;quot;Self-folding of two-dimensional thin templates into pyramidal micro-structures by a liquid drop - a numerical model&amp;quot; by Gregory Lecrivain, Helmholtz-Zentrum Dresden-Rossendorf, Germany, 2024.&lt;/p&gt; &lt;p&gt;1) folder &amp;quot;manuscript&amp;quot;,&lt;br&gt; This folder contains all text documents related to manuscript. Text and final figures are found in the directory.&lt;/p&gt; &lt;p&gt;2) folder &amp;quot;scripts&amp;quot;&lt;br&gt; This folder contains python and bash scripts used to post-process the raw data and prepare the figures. You will need to install some python3 libraries. Use the following command: pip install pyquaternion matplotlib scipy intersect.&lt;/p&gt; &lt;p&gt;3) folder &amp;quot;figures&amp;quot;&lt;br&gt; This folder contain information on how to run the simulations related to the figure. More information can be found in the README text file located in each figure/figX subfolder, where X the figure number in the manuscript.&lt;/p&gt; &lt;p&gt;4) folder &amp;quot;src&amp;quot;&lt;br&gt; This folder contains the all c++ files related to the source code.&lt;/p&gt; &lt;p&gt;4.1)&lt;br&gt; Prior to compiling, you should have gcc(7.3.0), openmpi(2.1.2), make(4.3), cmake(3.20.2), python(3.8.0), blas(3.8.0), lapack(3.8.0), boost(1.78.0), and git(2.30.1) available on your machine. The version number in the parenthesis corresponds to the one I used on the local HPC available at my institution. In my case, I type &amp;quot;module load gcc/7.3.0 openmpi/2.1.2 make/4.3 cmake/3.20.2 python/3.8.0 blas/3.8.0 lapack/3.8.0 boost/1.78.0 git/2.30.1&amp;quot;.&lt;/p&gt; &lt;p&gt;4.2)&lt;br&gt; To compile the libraries, open a terminal, cd to the src directory and type &amp;quot;make libs&amp;quot;. All outputs will placed in the folder $HOME/local. The libraries&amp;#39; tarballs needed to compile the code are placed in the Libs directory.&lt;/p&gt; &lt;p&gt;4.3)&lt;br&gt; I have manually installed paraview 5.9.1. pvpython is used to export txt data (hinge, drop and three-phase contact line) to vtk format.&lt;/p&gt; &lt;p&gt;4.4)&lt;br&gt; Open your ~/.bashrc file and add the following lines.&lt;br&gt; export IGL_NUM_THREADS=1&lt;br&gt; export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/local/libconfig-1.7.3/lib&lt;br&gt; export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/local/gmp-6.2.1/lib&lt;br&gt; export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/local/mpfr-4.1.0/lib&lt;br&gt; export PATH=$PATH:$HOME/microorigami/src #(or whereever, your chosen parent directory is)&lt;br&gt; export PATH=$PATH:$HOME/microorigami/scripts #(or whereever, your chosen parent directory is)&lt;br&gt; export PATH=$PATH:$HOME/microorigami/paraview/bin #(or whatever path you used)&lt;/p&gt; &lt;p&gt;4.5)&lt;br&gt; open a new terminal, cd to the src directory and type &amp;quot;make check_library_path&amp;quot;. The terminal should return&lt;br&gt; &amp;quot;library path to libconfig is correct&amp;quot;&lt;br&gt; &amp;quot;library path to gmp is correct&amp;quot;&lt;br&gt; &amp;quot;library path to mpfr is correct&amp;quot;&lt;br&gt; If that is the case, i.e. the paths are correctly set. To compile, type &amp;quot;make main post&amp;quot;. Alternatively, one can speed up the installation by typing &amp;quot;make -j 4 main post&amp;quot;, where 4 is the number of cpus I use.&lt;/p&gt; &lt;p&gt;4.6)&lt;br&gt; Help is available in each header file (.h) in the form of doxygen comments. Type &amp;quot;make doxy&amp;quot;. The folder html will appear under src.&lt;/p&gt; &lt;p&gt;4.7)&lt;br&gt; Type &amp;quot;make clean&amp;quot; to clean the src folder&lt;/p&gt; &lt;p&gt;5) folders &amp;quot;caX_sideY_ecZ.zip&amp;quot;&lt;br&gt; The zip files contains the raw data related to Figure 10. Here, X = 70 is the contact angle, Y = 5 the number of side panels and Z = 0.8, 1.6 and 2.4 the elasto-capillary number. After data extraction, three folders will be created, namely wd/ca70/side5/ec0.8, wd/ca70/side5/ec1.6 and wd/ca70/side5/ec2.4, where wd is your working directory. To convert the data into human-readable format (txt, vtk, stl,...) type &amp;quot;source Utils.sh; ExportScript --verbose --submit&amp;quot; in the working directory wd on the hpc. The bash function ExportScript is located in &amp;quot;scripts/Utils.sh&amp;quot;. All other raw data can be obtained by following the commands in the README text file located in each figX folder, with X=1,2,...,13. With Paraview, one is able to visualize the self-folding by loading the stl files.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:rights>
          <dct:RightsStatement rdf:about="https://creativecommons.org/licenses/by/4.0/legalcode">
            <rdfs:label>Creative Commons Attribution 4.0 International</rdfs:label>
          </dct:RightsStatement>
        </dct:rights>
        <dcat:accessURL rdf:resource="https://doi.org/10.14278/rodare.3033"/>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
789
268
views
downloads
All versions This version
Views 78984
Downloads 26835
Data volume 685.9 GB142.9 GB
Unique views 53859
Unique downloads 16034

Share

Cite as