Software Open Access
Hernandez Acosta, Uwe;
Thekke Veettil, Sachin Krishnan;
Wicaksono, Damar Canggih;
Michelfeit, Jannik;
Hecht, Michael
{
"links": {
"badge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.2061.svg",
"doi": "https://doi.org/10.14278/rodare.2061",
"conceptbadge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.2058.svg",
"conceptdoi": "https://doi.org/10.14278/rodare.2058",
"bucket": "https://rodare.hzdr.de/api/files/bb865116-74d3-47df-9748-8ad258fa92b3",
"html": "https://rodare.hzdr.de/record/2061",
"latest": "https://rodare.hzdr.de/api/records/3725",
"latest_html": "https://rodare.hzdr.de/record/3725"
},
"created": "2023-01-06T20:25:57.053950+00:00",
"stats": {
"volume": 161907807.0,
"unique_downloads": 25.0,
"version_unique_downloads": 213.0,
"unique_views": 465.0,
"downloads": 25.0,
"version_unique_views": 2878.0,
"version_views": 3651.0,
"version_downloads": 221.0,
"version_volume": 1622765056.0,
"views": 527.0
},
"files": [
{
"links": {
"self": "https://rodare.hzdr.de/api/files/bb865116-74d3-47df-9748-8ad258fa92b3/minterpy-0.2.0a0.tar.gz"
},
"size": 230751,
"checksum": "md5:3aeca3a405351da829301ab646c78f34",
"key": "minterpy-0.2.0a0.tar.gz",
"type": "gz",
"bucket": "bb865116-74d3-47df-9748-8ad258fa92b3"
},
{
"links": {
"self": "https://rodare.hzdr.de/api/files/bb865116-74d3-47df-9748-8ad258fa92b3/v0.1.1-alpha.zip"
},
"size": 11383539,
"checksum": "md5:2a0ae272ac24d3b18e939ac23f592c65",
"key": "v0.1.1-alpha.zip",
"type": "zip",
"bucket": "bb865116-74d3-47df-9748-8ad258fa92b3"
}
],
"revision": 14,
"doi": "10.14278/rodare.2061",
"metadata": {
"contributors": [
{
"affiliation": "HZDR/CASUS",
"name": "Schreiber, Janina",
"type": "Researcher"
}
],
"doc_id": "1",
"title": "Minterpy - multivariate polynomial interpolation",
"license": {
"id": "MIT"
},
"doi": "10.14278/rodare.2061",
"communities": [
{
"id": "casus"
},
{
"id": "hzdr"
},
{
"id": "rodare"
}
],
"language": "eng",
"relations": {
"version": [
{
"index": 1,
"parent": {
"pid_type": "recid",
"pid_value": "2058"
},
"is_last": false,
"count": 6,
"last_child": {
"pid_type": "recid",
"pid_value": "3725"
}
}
]
},
"creators": [
{
"affiliation": "HZDR/CASUS",
"name": "Hernandez Acosta, Uwe",
"orcid": "0000-0002-6182-1481"
},
{
"affiliation": "MPI-CBG",
"name": "Thekke Veettil, Sachin Krishnan",
"orcid": "0000-0003-4852-2839"
},
{
"affiliation": "HZDR/CASUS",
"name": "Wicaksono, Damar Canggih",
"orcid": "0000-0001-8587-7730"
},
{
"affiliation": "MPI-CBG",
"name": "Michelfeit, Jannik",
"orcid": "0000-0002-1819-6975"
},
{
"affiliation": "HZDR/CASUS",
"name": "Hecht, Michael",
"orcid": "0000-0001-9214-8253"
}
],
"description": "<p><code>minterpy</code> is an open-source Python package for a multivariate generalization of the classical Newton and Lagrange interpolation schemes as well as related tasks. It is based on an optimized re-implementation of the multivariate interpolation prototype algorithm (<em>MIP</em>) by Hecht et al.<a href=\"https://github.com/casus/minterpy#user-content-fn-1-6af88c5200c34eb0ec19bb0d46102dc1\">1</a> and thereby provides software solutions that lift the curse of dimensionality from interpolation tasks. While interpolation occurs as the bottleneck of most computational challenges, <code>minterpy</code> aims to free empirical sciences from their computational limitations.</p>",
"pub_id": "36106",
"access_right": "open",
"resource_type": {
"type": "software",
"title": "Software"
},
"keywords": [
"multivariate interpolation",
"multivariate polynomials",
"numerical modelling"
],
"access_right_category": "success",
"publication_date": "2021-12-06",
"related_identifiers": [
{
"identifier": "https://www.hzdr.de/publications/Publ-36106",
"relation": "isIdenticalTo",
"scheme": "url"
},
{
"identifier": "10.14278/rodare.2058",
"relation": "isVersionOf",
"scheme": "doi"
}
],
"version": "0.1.1-alpha"
},
"conceptrecid": "2058",
"updated": "2025-04-30T11:57:02.365792+00:00",
"id": 2061,
"owners": [
160
],
"conceptdoi": "10.14278/rodare.2058"
}
| All versions | This version | |
|---|---|---|
| Views | 3,651 | 527 |
| Downloads | 221 | 25 |
| Data volume | 1.6 GB | 161.9 MB |
| Unique views | 2,878 | 465 |
| Unique downloads | 213 | 25 |