Software Open Access

SPCI-Reconstruction

Kornek, Dominik; Berthold, Jonathan; Kögler, Toni


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.14278/rodare.192</identifier>
  <creators>
    <creator>
      <creatorName>Kornek, Dominik</creatorName>
      <givenName>Dominik</givenName>
      <familyName>Kornek</familyName>
      <affiliation>OncoRay, TU Dresden</affiliation>
    </creator>
    <creator>
      <creatorName>Berthold, Jonathan</creatorName>
      <givenName>Jonathan</givenName>
      <familyName>Berthold</familyName>
      <affiliation>Helmholtz-Zentrum Dresden - Rossendorf</affiliation>
    </creator>
    <creator>
      <creatorName>Kögler, Toni</creatorName>
      <givenName>Toni</givenName>
      <familyName>Kögler</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-9501-0898</nameIdentifier>
      <affiliation>Helmholtz-Zentrum Dresden - Rossendorf</affiliation>
    </creator>
  </creators>
  <titles>
    <title>SPCI-Reconstruction</title>
  </titles>
  <publisher>Rodare</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>single plane compton imaging</subject>
    <subject>compton camera</subject>
    <subject>image reconstruction</subject>
    <subject>maximum-likelihood expectation-maximization</subject>
    <subject>origin ensemble</subject>
    <subject>nuclear medicine</subject>
    <subject>range verification in particle therapy</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-01-17</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Software"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/192</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://github.com/dkornek/SPCI-Reconstruction</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsCitedBy">https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-376408</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://gitlab.hzdr.de/fwmp/invivodos/SPCI_ReCo</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-30631</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.191</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/health</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier>
  </relatedIdentifiers>
  <version>1.0</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Single plane Compton imaging (SPCI) is a novel approach to medical imaging of gamma radiation [1]. The possible range of applications includes nuclear imaging and range verification in proton therapy. For the purpose of image reconstruction, a software tool written in ROOT [2] and named SPCI-Reconstruction [3] has been developed. The implementation features the well-established MLEM algorithm for binned data [4] as well as a Monte-Carlo based algorithm called Origin Ensemble [5]. Given a precalculated system matrix and a file containing the measurements, the emission densities of the gamma radiation source can be backprojected into a voxel-based image space.&lt;/p&gt;

&lt;p&gt;[1] Pausch G et al. A novel scheme of compton imaging for nuclear medicine. 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD).&lt;/p&gt;

&lt;p&gt;[2] CERN. ROOT &amp;ndash; Data Analysis Framework. Release 6.12/04 - 2017-12-13. https://&lt;a href="http://root.cern.ch/content/release-61204"&gt;root.cern.ch/content/release-61204&lt;/a&gt;.&lt;/p&gt;

&lt;p&gt;[3] Kornek D. Anwendung von Maximum-Likelihood Expectation-Maximization und Origin Ensemble zur Rekonstruktion von Aktivit&amp;auml;tsverteilungen beim Single Plane Compton Imaging (SPCI). Master&amp;#39;s thesis. TU Dresden. 2019.&lt;/p&gt;

&lt;p&gt;[4] Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging. 1982; 1(2):113-22.&lt;/p&gt;

&lt;p&gt;[5] Sitek A. Representation of photon limited data in emission tomography using origin ensembles. Phys Med Biol. 2008 June; 53(12):3201-3216.&lt;/p&gt;</description>
    <description descriptionType="Other">{"references": ["https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-376408"]}</description>
  </descriptions>
</resource>
452
47
views
downloads
All versions This version
Views 452452
Downloads 4747
Data volume 2.1 MB2.1 MB
Unique views 337337
Unique downloads 3131

Share

Cite as