Figure Open Access

The Potential of Machine Learning for a More Responsible Sourcing of Critical Raw Materials

Ghamisi, Pedram; Rafiezadeh Shahi, Kasra; Duan, Puhong; Rasti, Behnood; Lorenz, Sandra; Booysen, René; Thiele, Sam; Contreras, Isabel Cecilia; Kirsch, Moritz; Gloaguen, Richard


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.14278/rodare.1314</identifier>
  <creators>
    <creator>
      <creatorName>Ghamisi, Pedram</creatorName>
      <givenName>Pedram</givenName>
      <familyName>Ghamisi</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1203-741X</nameIdentifier>
      <affiliation>Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Freiberg, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Rafiezadeh Shahi, Kasra</creatorName>
      <givenName>Kasra</givenName>
      <familyName>Rafiezadeh Shahi</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3666-4223</nameIdentifier>
      <affiliation>Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Freiberg, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Duan, Puhong</creatorName>
      <givenName>Puhong</givenName>
      <familyName>Duan</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5066-4399</nameIdentifier>
      <affiliation>College of Electrical and Information Engineering, Hunan University, Changsha, China</affiliation>
    </creator>
    <creator>
      <creatorName>Rasti, Behnood</creatorName>
      <givenName>Behnood</givenName>
      <familyName>Rasti</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-1091-9841</nameIdentifier>
      <affiliation>Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Freiberg, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Lorenz, Sandra</creatorName>
      <givenName>Sandra</givenName>
      <familyName>Lorenz</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-8464-2331</nameIdentifier>
      <affiliation>Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Freiberg, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Booysen, René</creatorName>
      <givenName>René</givenName>
      <familyName>Booysen</familyName>
      <affiliation>Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Freiberg, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Thiele, Sam</creatorName>
      <givenName>Sam</givenName>
      <familyName>Thiele</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-4169-0207</nameIdentifier>
      <affiliation>Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Freiberg, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Contreras, Isabel Cecilia</creatorName>
      <givenName>Isabel Cecilia</givenName>
      <familyName>Contreras</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-4758-6550</nameIdentifier>
      <affiliation>Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Freiberg, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Kirsch, Moritz</creatorName>
      <givenName>Moritz</givenName>
      <familyName>Kirsch</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1512-5511</nameIdentifier>
      <affiliation>Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Freiberg, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Gloaguen, Richard</creatorName>
      <givenName>Richard</givenName>
      <familyName>Gloaguen</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-4383-473X</nameIdentifier>
      <affiliation>Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Freiberg, Germany</affiliation>
    </creator>
  </creators>
  <titles>
    <title>The Potential of Machine Learning for a More Responsible Sourcing of Critical Raw Materials</title>
  </titles>
  <publisher>Rodare</publisher>
  <publicationYear>2021</publicationYear>
  <dates>
    <date dateType="Issued">2021-09-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Image">Figure</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/1314</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-33633</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.1313</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The digitization and automation of the raw material sector is required to attain the targets set by the Paris Agreements and support the sustainable development goals defined by the United Nations. While many aspects of the industry will be affected, most of the technological innovations will require smart imaging sensors. In this review, we assess the relevant recent developments of machine learning for the processing of imaging sensor data. We first describe the main imagers and the acquired data types as well as the platforms on which they can be installed. We briefly describe radiometric and geometric corrections as these procedures have been already described extensively in previous works. We focus on the description of innovative processing workflows and illustrate the most prominent approaches with examples. We also provide a list of available resources, codes, and libraries for researchers at different levels, from students to senior researchers, willing to explore novel methodologies on the challenging topics of raw material extraction, classification, and process automatization.&lt;/p&gt;</description>
  </descriptions>
</resource>
349
64
views
downloads
All versions This version
Views 349349
Downloads 6464
Data volume 263.8 MB263.8 MB
Unique views 251251
Unique downloads 3838

Share

Cite as