Figure Open Access

Unsupervised Data Fusion with Deeper Perspective: A Novel Multi-Sensor Deep Clustering Algorithm

Rafiezadeh Shahi, Kasra; Ghamisi, Pedram; Rasti, Behnood; Scheunders, Paul; Gloaguen, Richard

The ever-growing developments in technology to capture different types of image data (e.g., hyperspectral imaging and Light Detection and Ranging (LiDAR)-derived digital surface model (DSM)), along with new processing techniques, have led to a rising interest in imaging applications for Earth observation. However, analyzing such datasets in parallel, remains a challenging task. In this paper, we propose a multi-sensor deep clustering (MDC) algorithm for the joint processing of multi-source imaging data. The architecture of MDC is inspired by autoencoder (AE)-based networks. The MDC paradigm includes three parallel networks, a spectral network using an autoencoder structure, a spatial network using a convolutional autoencoder structure, and lastly, a fusion network that reconstructs the concatenated image information from the concatenated latent features from the spatial and spectral network. The proposed algorithm combines the reconstruction losses obtained by the aforementioned networks to optimize the parameters (i.e., weights and bias) of all three networks simultaneously. To validate the performance of the proposed algorithm, we use two multi-sensor datasets from different applications (i.e., geological and rural sites) as benchmarks. The experimental results confirm the superiority of our proposed deep clustering algorithm compared to a number of state-of-the-art clustering algorithms. The code will be available at: https://github.com/Kasra2020/MDC.

Files (318.5 kB)
Name Size
AE_arc_general.pdf
md5:13ba1cc22d04bdc8c85d6e2ffb214f98
81.6 kB Download
CAE_arc_general.pdf
md5:3bdd8d27730237052379a7efed80d52a
82.8 kB Download
MDC_modfiedV2_arc.pdf
md5:c0c98de1c096f8b07876c93adc49d4ea
154.0 kB Download
168
116
views
downloads
All versions This version
Views 168168
Downloads 116116
Data volume 12.1 MB12.1 MB
Unique views 112112
Unique downloads 8181

Share

Cite as