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Fig. 1 Unisolvent nodes PA in 2D (left) and 3D (right) with respect to Am,n,p for dimen-
sions m = 2, 3, n = 5, p = 2, and generating nodes GP = �m

i=1Cheb2ndn . Nodes belonging
to the same line/plane are colored equally.

Definition 4 (Essential Assumptions) We say that the essential assump-

tions hold with respect to A ✓ Nm and PA ✓ Rm, where m 2 N and A is a
complete set of multi-indices, if and only if there exist generating nodes

GP = �
m

i=1Pi , Pi = {p0,i, . . . , pni,i
} ✓ R , ni = max

↵2A

(↵i) , (10)

and the unisolvent nodes PA are given by

PA =
�
(p↵1,1 , . . . , p↵m,m)

�� ↵ 2 A
 
.

Unless further specified, the generating nodes GP are arbitrary.

In Figure 1, we illustrate examples of unisolvent nodes in two and three di-
mensions for the generating nodes GP = �

m

i=1Cheb
2nd
n

, where the Chebyshev
nodes of second kind Cheb2nd

n
are defined in Eq. (25). For better visualization,

all nodes belonging to the same line/plane are colored equally.

3 Multivariate Newton Interpolation

We use the above concept of unisolvence to provide a natural extension of the
classic Newton interpolation scheme to arbitrary dimensions. The extension
presented here relies on recursively applying Theorem 2 and Corollary 1. We
start by defining:

Definition 5 (Multivariate Newton Polynomials) Let the essential as-
sumptions (Definition 4) be fulfilled with respect to A ✓ Nm and PA ✓ Rm.
Then, we define the multivariate Newton polynomials by

N↵(x) =
mY

i=1

↵i�1Y

j=0

(xi � pi,j) , ↵ 2 A . (11)


