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Figure 1. Using a liquid drop, the unfolded two-dimensional template (a), called a structural net, spontaneously turns into

a pyramidal micro-structure (b-c). Hinges, connecting the base to each triangular side panel, deform during the folding.
Eventually, the drop is fully encapsulated by the structural net. The experiment was performed for illustration purposes.

1. Introduction

(a) General context

Capillary-induced nano and micro-origami are processes, by which surface tension spontaneously
folds a thin planar template into a hollow three-dimensional structure [1-5]. In nature, petaled
flowers have developed self-folding properties, that are solely triggered by surface tension [6].
In nano and micro-engineering involving thin film planar technology [7-10], three-dimensional
structures have been produced by depositing a liquid drop onto thin and foldable two-
dimensional polymer templates. Figure 1 illustrates a pyramidal micro-structure, that we
obtained by placing a drop onto a specific thin planar template, specifically referred to as
structural “net” in the technical literature [11-13]. Elastic hinges, connecting each side panel of
the net to the rectangular base, hold the template together. The liquid drop, by minimizing its
contact surface to the ambient air, triggers large deformation of the hinges and hence the folding.
By appropriately tailoring the structural net, the final folded structure remains three-dimensional
after the drop fully evaporates [14]. Inspired by that, micro-origami has found application in
biomedicine, for example, in the selective encapsulation of cells and bacteria by functionalizing
the surfaces of a foldable template [15-17].

(b) State-of-the-art and current limitations

The simulation of self-encapsulation (term used synonymously with self-folding), that is the
spontaneous encapsulation of a liquid drop by a thin and deformable two-dimensional template,
is challenging. Strong structural deformation, moving contact line, drop affinity to the template
along with water evaporation should ideally be taken into account. A number of models have
been suggested in the past. Patra et al. [18] used molecular dynamics to simulate the self-folding
of a graphene petal-like structural net by a nano-drop. In their three-dimensional simulation,
thousands of water molecules were used to discretize the nano-drop. Liu et. al [19] also used three-
dimensional molecular dynamics to investigate the self-folding of various graphene templates. In
their work, the initial two-dimensional templates were rectangular, circular and triangular thin
sheets. Further three-dimensional methods exist. One of them is based on the Surface Evolver [20].
Leong et al. [21] used it to simulate the self-folding of structural nets into micro-cubes with a
quasi-static assumption. The structural nets were made of thin square panels connected to one
another by deformable hinges. In their work, the Surface Evolver was used to iteratively re-
distribute the nodes of the drop surface by minimizing its surface energy. Similarly, in [22,23],
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the authors investigated the fabrication of five-faced micro-cubes. By deliberately omitting the
top surface of the micro-cube, the volume of water could be greater than that of the closed
micro-cube. In their work, a variational approach was used. The total energy, that is the sum
of a bending energy associated with the hinge deformation and an interfacial energy associated
with the drop deformation, was minimized. To model the hinge, a dimensionless parameter
was introduced. It characterized the ratio of the reference bending force to the surface tension
force. Further models based on the variational approach have been suggested for self-folding
simulations [24,25], yet they are mostly limited to two-dimensional simulations. Brubaker et
al. [26] are one of the few groups to have attempted to simulate the three-dimensional self-folding
with a variational approach. Their three-dimensional extension, described as highly challenging
by the authors, was however only valid for small deformations and could not accurately capture
the full encapsulation of the drop. Finally, Neukirch et al. [27] derived equilibrium solutions for
a two-dimensional drop resting on an elastic beam. Self-encapsulation by an elastic rod was also
studied experimentally and numerically in [28].

To conclude, three-dimensional self-folding simulations have been performed using molecular
dynamics with van der Waals and Coulomb interactions. Despite the excellent versatility
of molecular dynamics in defining the initial template shape, such simulations are still
computationally expensive and limited in atom number [29]. Liu et al. [19], for instance,
used about 20,000 water molecules to model a nano-drop. Three-dimensional extensions based
on energy minimization are faster, because they consider both the drop and the template
as continuum. Yet, most three-dimensional variational continuum models are either limited
to small deformations or reductive. It is often assumed, that the drop takes the shape of
a spherical cap throughout the folding process [26,30]. More complex continuum variational
models, which describe both the drop and the template deformation simultaneously, are usually
two-dimensional [27].

(c) Objectives

An alternative method is here proposed to simulate the three-dimensional self-folding of a
structural net composed of thin panels connected to one another by elastic hinges. As academic
application, star-like structural nets are chosen because they are reminiscent of those presented
in [21-23]. In their final states, the folded micro-structures take pyramidal shapes. Our method,
based on a continuum Allen-Cahn description [31], is different from those currently found in
the literature. In particular, phase field models, to which the Allen-Cahn model also belongs, are
a class of efficient computational methods that allow the study of complex three-dimensional
systems. With our method, the simultaneous folding of the structural net along with the drop
deformation are possible in just two hours on a personal computer.

This manuscript is arranged as follows. In the methods, we first begin by describing the
hinge model. Second, we describe the drop deformation model based on the minimization of
a free energy. The dynamic coupling between the two models is then addressed by providing a
numerical description for the calculation of the surface tension force. In the results, we showcase
the self-folding of the star-like structural nets into micro-pyramids and determine the necessary
condition triggering a full encapsulation of the drop, as experimentally illustrated in Figure 1b-c.

2. Methods

At simulation start, the structural nets are unfolded pyramidal micro-structures with a regular
polygonal base composed of N =3, 4, 5, 6 and 7 triangular side panels. A greater number of side
panels is possible. The base is fixed and connects to each side panel by two deformable hinges.
Figure 2 shows some selected structural nets, on which the drop initially rests. With a zero hinge
length, the volume V = .Ah/3 of each pyramid is identical. The base area A and the height h
of each pyramid are hence identical too and are set to V=V, and h =4.1R;, where V; is the
drop volume and Ry the equivalent drop radius. Considering a hemisphere as equivalent drop
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Figure 2. Unfolded pyramidal micro-structures, or structural nets. a is the apothem of the base panel. s and b are side
length and height of each triangular panel. Each triangular side panel is connected to the base by two deformable hinges.
Using the marching cubes [33], the drop is conveniently represented by a three-dimensional surface mesh.

geometry, the equivalent radius is given by V; = 2/37R5. With a the apothem of the polygonal
base, s and b the base and height of each triangular side panel, the length parameters of each
unfolded structural net are given by

2 _ A (X
a = N cot (N) s (2.1)
2 _ 4 A (T
s° = 4N tan (N) , 2.2)
¥ o= K244 (2.3)

The shortest distance separating the base to each side panel, which is here the hinge length, is set
to ¢/ R4 = 0.164. In the simulation, the base and side panels are arbitrarily thin prisms represented
by a triangulated surface mesh. In accordance with computer graphics [32], each surface mesh is
described by an array of vertices and triangular faces. We note, that the panel thickness in the
structural net, even though it later appears in Equation 2.16 to adequately model the drop affinity
to the material, is here neglected. Hence, the panels are assumed to have negligible mass and
inertia compared to the drop.

(a) Hinges

To simulate the hinge deformation, the cohesive beam model [34] derived analytically from the
Euler-Bernoulli beam theory [35] is here used. Because the hinge model is already presented in the
author’s previous work [36], we focus here on its most salient features. Each hinge is discretized
into a chain of n;, spherical beads with identical radii ;. As illustrated in Figure 3, the first bead
with index ¢ = 1 is connected to the base and the last one to the side panel. The trajectory of each
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Figure 3. Each hinge is decomposed into nj, = 10 spherical beads. The first bead, associated with the index ¢ =1, is
fixed to the base. The external force only acts on the last bead, to which the triangular side panel is attached.

bead is computed independently as

dx; _

> = U (2.4)
dQ; _ 1, o

& = 3 A;-Q;, (2.5)

where X; is the position of i-th bead centre of mass, Q; = (Qs Qz Qy QZ)ZT the quaternion
associated with the angular position of the bead, (Qs); and (Qz Qy Q »){ the scalar and vector
parts of the quaternion, U; and §2; = (£2; 2y (2z) ; the translational and rotational velocities and
A; a4 x 4 orthogonal matrix given by

0 —2: -0, -2
2 0 -0, 1
Q0 2. 0 -1
2. -0y 2 0

A= (2.6)

The dot operator in Equation 2.5 denotes the product A4;;Q; used in the conventional ij-matrix
notation. Each bead interacts with its next consecutive neighbor by a virtual beam (see Figure 4).
At each extremity of the virtual beam, a structural force F}, and torque T}, are exerted on the i-th
bead and its next neighbor, the j-th bead, where j =i + 1. With these structural forces yet to be
formulated, the velocities of each bead are given by

u; U;

mp < dt’ + T—:) = (Fp); + Fe, (2.7)
402, 2, B 4

I,. ( 7t Tb) = (Tp); + Te, (2.8)

where my, is the bead mass, I, a diagonal matrix whose components are the bead inertia moments,
T, a response time accounting for material damping [37], Fe and T. external force and torque
associated with the surface tension. In this work, Fe and Te only act on the last bead of the hinge.
In the beam model, the structural forces (F3); and (Fp); are conveniently expressed in the local
beam frame (X;e; e, e./). The unit vector defined in the axial beam direction is given by e, =
(X; — X;)/|X; — X;|. The corresponding component of the structural force acting on the i-th
and j-th beads are given by

(Fb . ex/)i = # ( |X]‘ - X,L| — 27"17), (29)

(Fy - ew’)j = —(Fp-ey) (2.10)

7
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Figure 4. A bead interacts with its direct neighbors via structural forces derived from the elastica theory. The structural
forces are conveniently expressed in the local beam frame (X e, e, e./).

where E is the Young modulus with respect to the hinge material. The other two force components
acting in the tangential beam directions along with the torques are formulated in [36], whereby a
similar notation has purposely been used here. The bead position and quaternion are integrated in
time via an explicit first-order forward method and velocities via an explicit second-order Adams-
Bashforth method. We define the reference structural force associated with the hinge as

_EI

E‘S’*ﬁy

(2.11)
where I = mf /4 is the area moment of inertia and ¢ = 2r,(nj, — 1) the hinge length.

The above hinge model could well be replaced with an analytical model for large deformation
[38,39]. The reason behind the chain decomposition into beads is twofold. First, the bead model
was already available and implemented. Second, our original intention was to model the drop
affinity to the hinge as well, which we eventually abandoned because the beads turned out to be
a lot smaller than the panels of the structural net.

(b) Drop

The liquid drop, the ambient gas and the structural net are replaced with continuous
concentration fields ¢;(x,t), ¢g(x,t) and ¢s(x,t), where & = (zyz)" isa point in space and ¢
the time. The hinge is here left out because it is spatially too small to be considered a field. As
one moves from the inner to the outer phase region, each concentration field smoothly varies
from unity to zero over an interfacial width £. The drop shape is a-priori unknown. Hence,
a modified Allen-Cahn model [31], that relies on the minimization of a free energy E(¢, V)
following the Ginzburg-Landau theory [40], is here employed. Dropping the subscript associated
with the liquid for better readability, that is ¢ = ¢, the spacial and temporal evolution of the
liquid concentration is obtained by solving

99 __19E
o +u- Vo= s (2.12)
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where u is an Eulerian velocity field associated with the folding of the structural net, 7, a response
time associated with the mobility of the drop, E = E/Eq the free energy in its non-dimensional
form, Eg =kpTy/ L% the reference energy, kp the Boltzmann constant, Tp the temperature, and
Lo a reference length [41]. The advection term u - V¢ on the left-hand side of Equation 2.12
contributes to a change in the drop shape caused by the displacement of each side panel, while
the right-hand side term strives for an energetically stable drop shape. The functional derivative
of the free energy is suggested as
SE 202

%:fb((ﬁ)*f V2o + [i(®, 09, ¢s) + fuw (@, ds,7), (2.13)
where f; is a bulk term, —¢£2V2¢ an interfacial term addressing the smooth transition from unity
to zero across the interface, f; a Lagrangian multiplier, f., a wall correction term accounting for
the drop affinity to the template and +y the contact angle. The bulk term, derived from a double-
well potential having two local minima located at ¢ =0 and ¢ =1, is given by

fo=46(¢ —1)(¢ — ¢c), (2.14)

where ¢ =1/2 4+ B(V;/V; — 1) is a corrected term maintaining the constant drop volume V; [42,
43], a > 0 a growth rate, V; = f ¢>2dv the drop volume at time ¢ and dv an infinitesimally small
volume element. The Lagrangian multiplier is given by f; = —¢¢4¢s, with ¢g =1 — ¢s — ¢ owing
to mass conservation. In short, f, ensures that all functional derivatives related to the present
ternary system are equal to zero at equilibrium, that is §E /¢ = 6 E /3¢ g = 6 E /5 = 0. For more
information about the Lagrangian multiplier, we refer the reader to the original literature [44,45].
The wall contribution, taken from [46], is given by

fu=0¢(b—1)|n|cos(v) — €2V - Vs, (2.15)

with n ={V¢s, the wall-normal vector field. Because the free energy E never appears in the
implementation, its formulation has deliberately been omitted. Only its functional derivative,
appearing in Equation 2.12, is here relevant. The individual concentration field associated with
each surface mesh, or prism, representing the structural net is given by

op = % {1 — tanh (g)} , (2.16)

where d(x) is the shortest signed distance from the point « to the sharp prism boundary. The
distance d is calculated using the pseudo-normal method [47], which works well for closed,
non-self-intersecting and manifold surface meshes, as is the case here. From this, the total
concentration field associated with the structural net ensues as

5= - (2.17)

For the special case, in which the liquid only co-exists with the gas, that is ¢s =0, Equation
2.13 reduces to 6E/6¢=4¢(¢ — 1)(¢p — 1/2) — £2V?¢. In a one dimensional space, it can be
analytically shown, that the solution to § E /§¢ = 0is ¢ () = 1/2 — tanh(z/€) /2 [48], which exactly
corresponds to the mathematical expression in Equation 2.16. Equation 2.12 is integrated in time
using an explicit first-order forward method. Its advection term u - V¢ is discretized in space
using a first-order upwind scheme. The Laplacian operator (V3)in Equation 2.13 and the gradient
operators (V) in Equation 2.15 are discretized via second order schemes. The reference surface
tension force is hereafter given by

F.=0Ry, (2.18)

where R, is the equivalent drop radius previously defined and o the surface tension.

(c) Coupling

The model is closed when the surface tension force F. and torque T. acting on the last bead
of each hinge are known. These act as external term in Equations 2.7-2.8. There exist various

0000000 v 308 4 901 sdsifeuinolioBunisiandiisnosieio: [



’ P,
(a) i (b) g R

\“ X '...
g ':

; P

’l .0

£ T
o

Figure 5. Original (a) and smoothed (b) three-phase contact line obtained by intersecting a side panel of the structural
net with the drop. L. = > | P;41 — P;| is the length of the three phase contact line on one side panel.

methods to estimate Fe and Te. We cite for instance the continuous force model [49,50]. We here
adopt another strategy based on intersecting the sharp interface of the drop with the structural
net. First, the marching cubes method [33] is used to determine a tesselated surface mesh of the
drop from the smooth concentration field ¢. We are free to choose any iso-value for ¢. A natural
candidate would be ¢ = 0.5. Our simulations have however shown, that the drop iso-surface does
not always intersect with the triangular side panel for high contact angle, typically > 120°. A
small distance, typically one grid spacing dx, may separate the drop iso-surface from the surface
mesh representing the triangular side panel. A simple, yet effective work around, consists in
selecting a slightly lower iso-value, in this case, ¢ =0.4. Second, the geometrical intersection
between the surface meshes representing the drop and the top surface of each triangular side
panel are performed, resulting in a first set of polylines representing the three-phase contact
lines. Because of the tesselation, the contact line is not smooth. Therefore, a new polyline {P;} is
determined by approximating it with a spline [51]. Figure 5 shows the smooth redistribution of the
points forming the three-phase contact line on the side panel. The calculation of the wall-normal
surface tension force is relatively straightforward. It is given by

F.— %Lc sin(y)n, (2.19)
where L. is the length of the three-phase contact line given by
Le=) |Piy1— Pyl (2220)
Accordingly, the external torque is given by
T. = Fex(P-X), (2.21)

where P is the barycentre of the three-phase contact line { P;} and X = (X )y, the position of the
last bead, whose index has been dropped. We recall that that each triangular panel is pinned to the
last bead of the hinge, whose position X and velocities U and §2 are known. The velocity of each
mobile panel hence converts to an individual Eulerian field up =U + £2 x r, where r = — X.
Finally, the total velocity in Equation 2.12 is given by u =Y ¢pup.

For the implementation of the model, ingredients from various independent sources were
used. To solve the advection Equation 2.12, the “PETSc” library [52], which comes with a series
of data structures and routines for solving partial differential equations on high performance
computer, is used. For operations on the tessellated objects, that are the calculation of the shorted
distance to the wall (Equation 2.16) and the determination of the three-phase contact line by
intersecting two tessellated mesh surfaces, the “libigl” library [32] is used. For smoothing the
three-phase contact line, the “fitpack” library [53] is used. The presented method has been
implemented using the Message Passing Interface for enhanced performance. In an engineering
context, the model, as will be shown later, performs well and shows a relatively good performance
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Figure 6. Vertical deflection § of hinge composed of ten beads against external load Fe. The denominator F in the
abscissa is the reference structural force. £ is the hinge length.

in terms of accuracy and computational time. The source code, which we documented, along with
some of the raw data presented in the following have been made available [54].

3. Results

(a) Validation

First, the hinge model is validated. A hinge, composed of n;, =10 beads, is initially set in
horizontal position and has its left extremity fixed. The position and velocity of the first bead is
zero, thatis Xo =0, Ug = 0 and £2¢ = 0. On the last bead, that is the right extremity of the hinge,
an external force pointing downwards acts as Fe = —Fcey. The vertical deflection J, obtained
after an equilibrium state is reached, is calculated at the hinge extremity. Figure 6 shows the
deflection § as a function of the external load Fe, that we normalize with the reference structural
force given in Equation 2.11. In the small-deflection region, which we define for Fe/Fs < 1 based
on the results, the vertical deflection increases linearly with the external load as

d Fe
[ 3Fs
The analytical solution related to the large-deflection is provided in [35]. With a number of beads
set to ten, the match in terms of bending between the simulation data and the theory is excellent
for both the small and large structural deformations.

Second, we perform a mesh independence study for the validation of the three-phase contact

line model. To this end, a drop is initially placed on the top surface of a rectangular thin template.

(3.1)
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Figure 7. Surface tension force | F¢| acting on a flat template against contact angle ~. The reference capillary force is
F. =o0Rg4, where R is the radius of the hemisphere obtained for v = 90°.

The mobile panels along with the hinges are here left out. The drop is initialized to a hemisphere
with volume Vy. The contact angle, v, is varied from 20 to 140°. The simulations are performed
in a cubic domain discretized into 1003, 150% and 2003 grid points. The interfacial thickness in
Equation 2.16 is hence gradually decreased from & to £/2, to £/3. Figure 7 shows the magnitude
of the surface tension force Fe, calculated along the three-phase contact line using Equation 2.19,
against the contact angle. The orange line corresponds to the theoretical solution, which assumes,
that the drop at equilibrium takes the shape of a spherical cap [55,56]. In the intermediate region,
30° <y < 120°, the agreement between simulation and theory is relatively good. With a contact
angle lower than v < 20°, full wetting occurs. The drop flattens and, in many cases, reaches
the template boundaries. Under such circumstances, it becomes nearly impossible to determine
the contact angle. That is one reason why the simulation blue points on the far left in Figure 7
may significantly deviate from the theoretical line. Beyond, that is in the region where strong
to extreme dewetting occurs, deviation is also observed. In this upper interval, the three-phase
contact line is generally short. Any small error in intersecting the drop iso-surface with the thin
template results in relatively strong deviations. The increasing errors with decreased length of
the three-phase contact line is reflected in Figure 7. For v > 135°, full dewetting occurs. A thin
cushion with a height of about one unit grid spacing dx forms between the drop and the flat plate.
For this reason, A contact line can not be determined. In all following simulations, we choose a
cubic Eulerian domain made of 150 nodes and set the interfactial witdh equal to the one grid
size element, taht is £ = .
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Third, we compare the equilibrium three-phase contact line on a partly folded structural net
to a semi-analytical solution. Because the structural net is here fixed, only Equation 2.12 with
u =0 is solved. We set the number of side panels to N =4, the contact angle to § =70° and
the folding angle to a = 30°. More information about the folding angle is provided later on in
Section 3(c). For now, it is sufficient to know, that the structural net is partially folded and does
not change with time. The hinges are left out, that is £ = 0. Figure 8b shows the simulated drop at
equilibrium. A comparative theoretical solution cannot be easily determined, we therefore resort
to a semi-analytical model, in which the upper surface of the drop is represented by a spherical
cap with radius R. and centre-of-mass altitude h.. The subscript “c” stands for “cap”. In this
semi-analytical model, the lower drop surface not in contact with the structural net is made of
N flat planes. As shown in Figure 8a, each plane passes through the nearest long edges of two
side panels. R. and h. are a-priori unknown. We therefore simultaneously solve the equations
Ve(Re, he) =V and 6¢(Re, he) = 6 given the drop volume V; and the contact angle 6. Here, V. is
the semi-analytical drop volume calculated with a volume mesh generator [57] and 6. the contact
angle determined analytically by arithmetic means. The description of the optimization technique
used to simultaneously solve the pair of equations (Ve = Vg, 0 = 6) goes well beyond the scope
of this work. If interested, the reader can consult the algorithm provided in [54]. Figure 8c shows
the mean distance A between the simulated contact line and its semi-analytical counterpart as a
function of the drop volume, which varies from V;/V = 0.5 to 1.6. We recall that V is the volume
of the folded pyramidal micro-structure. Prior to calculating the mean distance A, each polyline
representing the three-phase contact line is resampled into n =100 points. The schematics in
Figure 8c illustrates the calculation of the distance A. For V;/V =1, which is of relevance in
the following analysis, we observe a deviation from the semi-analytical solution of less than
A/s < 4%. In Figure 8d, the semi-analytical three-phase contact line (orange curve) is overlaid
with the simulated one (blue) for three selected drop volumes denoted by the letters ¢, j and k.
Also here, a qualitatively good agreement between the two curves is observed.

(b) Non-dimensionalization

In the millimeter and sub-millimeter scale, the surface tension force prevails by several orders of
magnitude over the buoyancy and hydrostatic forces [27]. These contributions can hence be safely
neglected. The key parameter in this study is the elasto-capillary number, defined as the ratio of
the reference surface tension force to the reference structural force. It is here given by

7FC

Fe=—.
‘R

(3.2)
Typical values for Ec can be derived from previous experimental scenarios on self-folding. Van
Honschoten et al. [22] fabricated micro-cube with an edge length set to about 50 um, which
converts to an approximate drop radius R4 = 31 nm. The hinge thickness, which we take here as
the bead radius, was r;, = 1 pym. The Young modulus of the material was E = 260 GPa. The surface
tension between air and water, taken from literature, was o = 0.073 N/m. The hinge length was
varied from £ = 2 to 10 um. For the shortest hinge, respectively the longest, we find Ec = 0.44 and
11.08. In our recent experimental work [10], we also investigated experimentally the self-folding
of a structural net into a milli-cube filled with water. The edge length of the cube was 3 mm,
which converts to a drop radius drop radius Ry = 1.86 mm. The length of the hinge was about
£ =100 pm and the Young modulus of the material £ = 0.27 GPa. Self-folding occurred for a hinge
thickness, which we also take as the bead radius, ranging from about r; = 10 pm down to 5 pm.
This results in an elasto-capillary number equal to Ec = 0.71 and 11.30, respectively. Based on the
above two references, it is fair to assume an elasto-capillary number in the typical experimental
range 0.1 < Ec < 10. As will be seen in the next subsection, this range corresponds to that used in
our simulations.

It is interesting to briefly discuss the non-dimensionalization of the equations using, among
others, the elasto-capillary number. Let us first focus on the hinge Equation 2.9, which we divide
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Figure 8. (a) Drop shape obtained with the semi-analytical method. (b) Simulated drop shape in equilibrium obtained by
solving Equation 2.12. (c) Mean distance (A) from the simulated three-phase contact line to the semi-analytical solution.
(d) Semi-analytical and simulated three-phase contact lines for selected volume V;/V = 0.53, 0.95 and 1.42. The folding
angle is set to a = 30° and the contact angle to 8§ = 70°. V; is the volume of the drop and V that of the fully folded
pyramid.

on each side by the reference structural force F; earlier defined. For the sake of simplicity, the
damping term is left out. After simplification, we obtain for the last virtual beam

K( ddttf) — 16(np — 1)? (M _ 1) + %sin(’y)Ec, (33)

2Tb d

where K = poU2L2/Fs is the ratio of the reference inertia force associated with the fluid to
that associated with the structural hinge, po the reference density, Uy the reference velocity, Lg
the reference length, 7 =m/(pgL3) the dimensionless bead mass, U = U /Uy, and i = tUy/Lo.
The reference velocity Uy could for instance be the terminal velocity of the drop sedimenting
in the air. Three dimensionless terms appear in Equation 3.3. The first term preceding the bead
acceleration can conveniently be re-written as K = (poUE L3/ Fe) x (F./Fs) =We x Ec, where
We is the Weber number. There is only a limited number of works reporting the Weber numbers
in self-folding applications. We cite here the work by Antkowiak et al. [58], who reported a Weber
number between 0.2 < We < 15. The dimensionless number K hence covers multiple orders of
magnitude. In the following, we set K =1 not only for simplicity but also because of a much
shorter simulation time. The second term 16(n;, — 1)? represents the hinge length in terms of
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Figure 9. Partial folding and complete folding obtained at equilibrium. In a, the contact angle is set to v = 70° and, in b-c,
it is set to vy = 90°. The elasto-capillary number is set to E'c = 1.2 in a-b and to E'c = 3.0 in c. Because of the projection
into a two-dimensional plane, only three side panels of the structural net are seen. In reality, there are N = 5 side panels.
The hinges are not shown.

bead number. The third term, that is L./ R sin(y) E, represents the action of the surface tension
force. Interestingly, the length of the three-phase contact line and the drop radius are in the same
magnitude order, that is L./R4 ~ 1. In our simulations, the contact angle varies between 70 and
90°, meaning that sin(vy) ~ 1. It turns out, Ec is the major contributor to the final equilibrium
state. This is a strong advantage of the present normalization. To obtain fast and stable transient
simulations, the bead mass along with the diagonal components of the moment of inertia matrix
are set to 7 = 1 and I = 1. Exact values for the bead mass and moment of inertia are only relevant
for transient simulations, which are not of primary interest here. The response time related to the
material damping is set to 7, Lo /Ug = 0.05, thereby ensuring overdamped structual dynamics and
hence further shortening the simulation time.
The non-dimensionalizaion also applies to the drop Equation 2.12, which reads
%erieﬁ-Vq&:f%, (34)
where Pe =714Uy/Lg is the Peclet number, V=V /Lo and @ =u/Up. In most three-phase flow
simulations, the Peclet number is chosen to be close to unity for stability reasons [59,60]. We do
the same here and set Pe = 1. We stress, that K and Pe play a secondary role and only affect the
transient folding dynamics. They do not affect the final steady-state configuration. One primary
interest lies here in determining the critical elasto-capillary number Ec, at which the transition
from partial to full drop encapsulation occurs. Setting K and Pe to unity has another advantage.
It allows to adequately discretize Equations 3.3 and 3.4 with the same time step 6t.

(c) Folding

To quantitatively discuss the results, we further describe the folding angle « between the base
and the side panel. It is illustrated in Figure 9. The subscript in o, denotes the maximum folding
angle, which corresponds to full drop encapsulation, that is when the shortest distance between
two adjacent sides drops to zero. Figure 10 illustrates the folding angle as a function of time
for the structural net with a five-sided base. The time abscissa is made non-dimensional with
the denominator ¢y =25Lg/Up. At time t/to =0, the folding angle is zero. Irrespective of the
elasto-capillary number, the folding angle smoothly increases until it reaches an equilibrium
a(t — 00) = aioo. We select the data obtained with an elasto-capillary number ranging from
Ec=0.8 to 2.4. With Ec=0.8 and 1.6, the encapsulation is only partial and the equilibrium
folding angle equals aco =31.6° and 67.2°, respectively. With Ec=2.4, a full encapsulation
occurs and the folding angle is eventually capped by its maximum, which here equals v, = 98.7°.
In theory, that is when the gap is null, the maximum folding angle is = — tan~t(h/a). For N =3
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Figure 10. Folding angle () as a function of time. The base of the structural net is a pentagon, thatis N = 5. The contact
angle is set to v = 70°. Ec is the elasto-capillary number.

and N =7, the maximum theoretical folding angle is 97.3° and 98.1°. A further strength of
the model lies in the fact, that a transient investigation of the folding in terms of force balance
is possible. In the sub-millimeter scale and especially during the transient, force measurement
remains an experimentally difficult task to perform. With our model, the surface tension force can
be precisely determined as a function of the folding angle a. This is shown in Figure 11 for § = 70°
and Ec = 1.5. With a number of side panels equal to N = 3 and 4, full encapsulation occurs. With
N =3, that is the darkest blue curve, we show the three-phase contact line at selected positions
in Figure 11a-f. The surface tension force initially increases linearly from position ‘a” to 'b’. From
position ‘b’ to 'd’, the length of the three-phase contact line decreases and so, the surface tension
force decreases too (Figure 11b-c). From position ‘d” onwards, a second three-phase contact line
near base of the triangular side panel appears (Figure 11d-e). The surface tension forces increases
rapidly and full encapsulation occurs soon after. Figure 11f, shows the final three-phase contact
line. With increasing number of side panels, see the light blue curves associated with N =4 to
7, the encapsulation is only partial and so, the surface tension force linearly decreases with « to
eventually stop at the steady-state abscissa aco = 38.7°, 48.3° and 62.7°, respectively.

The results, shown in Figures 10-11, suggest the existence of a critical elasto-capillary number,
at which the transition from partial to full drop encapsulation occurs. To determine this transition,
the equilibrium folding angle ao obtained for increasing Ec is shown in Figure 12. Irrespective of
the number of side panels IV, the equilibrium folding angle increases until it reaches its maximum
capping value o, . To determine the transition from partial to full encapsulation, we approximate
with a quadratic function of the form deo = agEc + a1 Ec? the data points satisfying aeo < am.
The coefficients ap and a; are determined with a best-fit algorithm based on the least square
method. The solution to the equation, oo (Ec) = aun, is then used to determine the critical elasto-
capillary number Ec. An annotation illustrating the transitional abscissa Ec is shown in Figure 12.
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contact angle 8 = 70°. Ec is the critical value, at which full encapsulation occurs. The quadratic curves 8o (Ec) are
best fitted to the simulation data. IV is the number of side panels.
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An increase in the number of panels results in a greater critical number Ec¢. According to Equation
2.2, this is to be expected. With increasing N, the side panels become norrower, that is s decreases.
This in-turn leads to a shorter contact line and hence to a lower surface tension force driving
the folding process. To better illustrate this trend, the critical elasto-capillary number is shown
in Figure 13 against the number of side panels N for the contact angles v =70° and 90°. It is
found, that the critical elasto-capillary follows a linear trend with increasing number of triangular
side panels N in the structural net. We also find, that a lower contact angle, that is a drop with
higher affinity to the structural net, does not necessarily trigger encapsulation at lower Ec. With
a stronger affinity to the structural net, the drop extends on the thin extruded sides and so, the
normal component of the surface tension force is reduced.

4. Conclusions

We have introduced a numerical framework that combines structural and surface-energy
minimization models to simulate complex nano- and micro-origami self-folding processes in three
dimensions. Our model involves a liquid drop that induces spontaneous folding and dynamic
deformation of the structural net. One advantage of the model includes the incorporation of
time-derivative terms addressing unsteady three-dimensional dynamics. Because the model is
continuum, it can theoretically be used to simulate the self-folding of a structural net of any size.
In reality, for self-folding to occur, the surface tension force must prevail over the gravity force.
The limiting size of the system can be easily determined with the Bond number Bo = p, gR?i /o,
which represents the ratio of the reference gravity force to the reference surface tension force. With
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pe¢ = 1000 kg/m3 the liquid density, g = 9.8 mvs? the gravity, o = 0.073 N/ the surface tension, and
R, the drop radius, we obtain Bo~ 0.14 - 10° R%. The Bond number falls below unity for Ry < 7
mm. Hence, in the millimeter and sub-millimeter size range, the capillary force dominates over
gravity. This is in agreement with previous experimental works, where the drop size typically
varies from about 50 pm to 5 mm [10,22].

As application, we simulated the self-folding of two-dimensional templates into pyramidal
micro-structures and determined the transition from partial to full drop encapsulation. We here
varied the number of triangular side panels along with the elasto-capillary number. Because
regular pyramids were here used, the capillary force only needed to be calculated on the first side
panel. The model could well be used to simulate the self-folding of more arbitrary structural nets,
such as the self-folding into cubic micro-structure with a flat panel on top. This would require
some changes in the implementation and will be part of future work. A more advanced parameter
study could have also been performed. For instance, we tried to investigate the change in a hinge
length ¢ as well. With a good affinity to the solid, that is v < 80°, and a panel gap greater than
a few grid size elements, the liquid slowly diffused to the other side of the structural net. Such
simulations were hence not included. Evaporation could also be considered, because in the sub-
millimeter scale, it can occur rapidly. This could be done in a relatively easy way by changing the
tuning the parameter 3 in Equation 2.14.
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