| Type of hazard | Hazard | | | Component | Potential
consequences | Calculations done | Risk assessment Probability (P): 0 100% Severity (S): 0 100% P S | | Base risk | Risk reduction measures A -inherently safe design B -safeguarding C -Information for use | Risk
assessment
after
implementing
risk reduction
measures
P S | | Residual risk | |---------------------------------|------------------------------|--|--|---|--|-------------------|--|-----------------------------|-------------------------------|--|--|-----------------------------|----------------------------| | Mechanical
hazards | cutting parts | | | any | cutting damage | | 30 | 30 | 60 | deburring parts (A) | 10 | 30 | 40 | | | nign pressure | volume change during normal
operation
H2 production | due to humid assembling
due to leakage
due to | -
(see material release) | | x
x | 10
40
70 | 10
70
10 | 20
110
80 | appr. cell design (A) salt drying (C) | 5
20
70 | 10
70
10 | 15
90
80 | | | | CI2 production H2O production HCI production due to heating | overcharge/overdischarge
due to humid material (salt)
due to humid material
due to leakage | -
-
(see material release) | material release,
explosion | x
x
x | 40
15
50
40
100 | 100
70
60
10
10 | 140
85
110
50
110 | definition of safe
operation window (C)
salt drying (C)
salt drying (C)
appr. cell design (A)
appr. cell design (A) | 20
5
20
20
100 | 100
70
60
10
10 | 75
80
30
110 | | | | due to vapour pressure due to side-reactions | caused by furnace
caused by short-circuit
caused by side-reaction | - | | x
x | 30
40
20
10 | 10
10
10
10
5 | 40
50
30
15 | safety switchoff (A) appr. cell design (A) appr. cell design (A) | 5
30
20
10 | 10
10
10
10
5 | 15
40
30
15
0 | | | material release | | by salt | housing | | | 30
30 | 80
80 | 110 | appr. material selection | 20
20 | 80
80 | 100 | | | | | by Na (vapour) | sealing ring
feedthrough
crucible
ceramic of feedthrough | | | 30
70
20
40 | 80
80
30
80 | 110
150
50
120 | (A), salt drying (C) | 20
60
20
20 | 80
80
30
80 | 100
140
50
100 | | | | | by Zn (vapour) | braze of feethrough
crucible
Al2O3 or glassy carbon
crucible and housing | | | 60
10
10 | 80
30
30 | 140
40
40 | appr. material selection (A) | 10
10
10 | 80
30
30 | 90
40
40 | | | | | by HCI by applying wrong potentials | feedthrough
sealing ring
metals
metals | | | 50
30
30
10 | 80
80
80 | 130
110
110
90 | salt drying (C)
definition of operating
window (C) | 50
30
15
10 | 80
80
80 | 130
110
95
90 | | | | due to corrosion from outside | by humidity or oxygen | housing lid feedthrough | | | 20
20
80 | 80
80
80 | 100
100
160 | window (O) | 10
10
80 | 80
80
80 | 90
90
160 | | | | | by insulation | sealing ring
housing
lid
feedthrough
sealing ring | material release, fire, injury | | 20
20
20
20
20 | 80
80
80
80 | 100
100
100 | selection of appropriate
materials (A) | 10
10
10
10 | 80
80
80
80 | 90
90
90
90
90 | | | | | by chemical lab vapours (HCI) | housing
lid
feedthrough
sealing ring | | | 20
20
20
20 | 80
80
80 | | | 10
10
10
10 | 80
80
80
80 | 90
90
90
90 | | | | due to thermal shock | manufacturing defect bad welding | feedthrough crucible any feedthrough, housing | | × | 80
30
20
40 | 80
80
80
80 | 160
110
100
120 | definition of
heating/cooling rate (C)
pressure test (A) | 20
10
0
0 | 80
80
80
80 | 100
90
80
80 | | | | due to abuse | bad swadgelok bad torque of sealing ring falling down | swadgelok sealing ring | | | 30
30
10 | 80
80
80 | 110
110
90 | definition of safe torque (C) | 0
10
10 | 80
80 | 90
90 | | | | due to aging | lifting cell at feedthrough etc.
penetration from outside
thermal cycling
by expansion of current | -
-
feedthrough | | | 40
10
70 | 80
80
80 | 120
90
150 | handling instructions (C) further tests required | 10
0
70 | 80
80
80 | 90
80
150 | | | | due to thermal stresses due to overheating | collector, pressing in
feedthrough wire
(see high pressure) | feedthrough | | | 80 | 80 | 160 | | 80 | 80 | 0 | | Electrical hazards | | due to phase change due to abuse | | crucible | | x | 10 | 80 | 90 | handling instructions (C) | 10 | 30 | 0
40 | | | | due to power outage
due to internal short | sheat failure
self-discharge
bridiging electrodes by
deposited Zn | sheat
salt
cabling | overpressure | | 10
80
80
80 | 30
30
30
30 | 40
110
110
110 | | 10
80
80
80 | 30
30
30
30 | 40
110
110
110 | | | _ | and gas generation | deposited Na vapour and corrosion and corrosion | feedthrough | (see high pressure)
(see corrosion)
(see high pressure)
(see corrosion) | | 60
15
15 | 30
90
90 | 90
105
105 | definition of operating window | 60
5
5 | 30
90
90 | 90
95
95 | | | power outage | | | | (see material release)
(see short-circuit) | | 70 | 40 | 110 | | 70 | 40 | 110 | | | outside corrosion | | | | burning fingers
(see material release) | | 30 | 30 | 0 | instructions for use (C) selection of appr. materials (A) | 10 | 30 | 0 | | | overneating | due to failure of temperature
controller
due to removal or broken
thermocouple | | | (see overpressure) | | 20
20
40 | 80
80
80 | 100
100
120 | | 20
10
10 | 80
80
80 | 100
90
90 | | | | active metals
co-deposited metals | | Na, Zn
Li, Ba, K, Sr, Ca | | | | | 0
0
0 | | | | 0
0
0 | | | | salts
structural material
corrosion products | Ni, Cr, Fe chlorides
Mo, W chlorides
CuCl, CuCl2
Ag, Au chlorides
Oxides
Hydroxides | BaCl2, NaCl, ZnCl2,
CaCl2, KCl, SrCl2
alumina, alumina fibres
housing
currenct collector
sealing ring
feedthrough
humidity
humidity | (not included below)
(not included below) | | | | 0
0
0
0
0
0 | | | | 0
0
0
0
0
0 | | | specific material
hazards | skin | corrosion | alkali metals, many chlorides | (not included below) | | | | 0 | | | | 0 | | | | flammable toxic to aquatic life | irritation
gas
solid | Na, Ca, Li, Ba, K, Sr
Ba
Zn, Cu, Ag, Cr, Mo | | | | | 0
0
0 | | | | 0
0
0 | | | | eye
explosive
harmful/toxic | irritation damage after air contact if swallowed in contact with skin if inhaled | chlorides many substances K-peroxide Ba, most chlorides CuCl2, CuCl BaCl2, NiCl2, HCl, Cl2 | injury, intoxication,
damage | | | | 0
0
0
0
0 | Wear gloves and eye
protection (C),
disassembe in
fumehood (C), operate
under fumehood (C) | | | 0
0
0
0
0 | | | | allergy or asthma
CMR
damage to unborn child
damge to organs
corrosive to metals | genetic defects carcinogenic | Au, Cr, Fe, Ni chloride
NiCl2
NiCl2, ceramic fibers
NiCl2, LiCl
Ni, Cr, Mo chlorides, Cl2
Ag, Cr, Fe, Cu chlorides | | | | | 0
0
0
0 | | | | 0
0
0
0
0 | | | | aerosol
vapour
gas | all Na, ZnCl2 PH3 made from phosphorous in alumina, phosphide and | | | | 70
70
50 | 95
95
95 | 165
165
145 | Operated and disassemble under fumehood (C) | 10
10
10 | 95
95
95 | 105
105
105 | | Hazards | | skin | water | CuCl2 | external corrosion | \vdash | 80 | 80 | 160 | wear gloves (C) Select appr. materials | 10 | 80 | 90 | | associated with the environment | moisture
fall over | | | | (see material release) (see short-circuit) | x | 10
10 | 80
40 | 90
50 | (A) | 10
10 | 80
40 | 90
50 | | | chemical
substances (e.g. | | | | (see material release) | l | 10 | 30 | 40 | | 10 | 30 | 40 |