DATA REPOSITORY

CMOS-compatible manufacturability of sub-15 nm Si/SiO₂/Si nanopillars containning single Si nanodots for single electron transistor applications

J. von Borany^{*}, H.-J. Engelmann, K.-H. Heinig, E. Amat, G. Hlawacek, F. Klüpfel, R. Hübner, W. Möller, M.-L. Pourteau, G. Rademaker, M. Rommel, L. Baier, P. Pichler, F. Perez-Murano, and R. Tiron

Semiconductor Science and Technology **38**, 055011 (2023) doi: 10.1088/1361-6641/acbe5d

*Corresponding author: Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany Phone: +49 351 260 3374 Email: <u>j.v.borany@hzdr.de</u>

Description and References to Figures and Tables:

Remarks: The TEM, EFTEM, HIM micrographs represent the as-recorded images without any markers or legend, included in the final publication figures. Datasets are saved as .csv

Publication Reference	Description	Image/Data/ File-Reference	Туре
Fig. 3a	Drain-source current of the SET operating at RT as a function of the thickness of the tunnelling oxides.	Figure_3a.tif Fig-3a_data.csv	lmage Data
Fig. 3b	Drain-source current of the SET operating at RT as a function of the pillar diameter for a circular Si ND.	Figure_3b.tif Fig-3b_Data.csv	lmage Data
Fig. 5	Si excess depth profile after ion-beam mixing as obtained from TRIDYN simulations.	Figure_5.tif Fig-5_Data.csv	lmage Data
Fig. 6	Set of kMC simulations of SiO _x phase separation and Si ND formation in cylindrical Si/SiO _x /Si nano- pillars of different diameters.	Figure_6.tif	Image
Figs. 8a-c	Sequence of Si-plasmon-loss-filtered TEM micro- graphs of an Si/SiO ₂ /Si stack, from top to bottom: (a) as deposited, (b) ion-irradiated, (c) annealed.	Figure_8a-c.tif	Image
Fig. 8d	Normalized Si depth profiles as extracted from grey- scale values of EFTEM images Figs. 8a-c.	Figure_8d.tif Fig-8d_Data.csv	lmage Data
Fig. 9a	HIM micrographs of pillar arrays 1C after annealing.	Figure_9a.tif	Image
Fig. 9b	HIM micrographs of pillar arrays 1F after annealing.	Figure_9b.tif	Image
Fig. 10a	HIM image of NPs after annealing in an $N_2/O_2 =$ 99/1 vol.% atmosphere.	Figure_10a.tif	Image
Fig. 10b	EFTEM image of an individual NP of Fig. 10a using Si-plasmon-loss filtering.	Figure_10b.tif	Image

Fig. 10c	EFTEM image of the NP from Fig. 10b using SiO ₂ - plasmon-loss filtering.	Figure_10c.tif	Image
Fig. 11a	NP diameter for pillars of array 1 (CD30) after RIE etching and subsequent RTA at 1050°C.	Figure_11a.tif Fig-11a_Data.csv	lmage Data
Fig. 11b	Reduction of the intermediate oxide thickness for stacked Si/SiO ₂ /Si pillars of various diameters and ~ 80 nm total height.	Figure_11b.tif Fig-11b_data.csv	lmage Data
Fig. 12a	Si-plasmon-loss-filtered EFTEM images before a single plasma oxidation	Figure_12a.tif	Image
Fig. 12b	Si-plasmon-loss-filtered EFTEM images after a single plasma oxidation	Figure_12b.tif	Image
Fig. 12c	SiO ₂ -plasmon-loss-filtered EFTEM image of the pillar shown in Fig. 12b.	Figure_12c.tif	Image
Figs. 13a-c	Si-plasmon-loss-filtered EFTEM micrographs show- ing isolated NPs (IPs) of nominal 50 nm, 40 nm and 30 nm diameter, fabricated the process flow sket- ched in Figure 7 of the paper.	Figure_13a-c.tif	Images
Figs. 13d-f	Enlarged details of Figs. 13a-c showing the oxide region with Si inclusions.	Figure_13d-f.tif	Images
Fig. 13g	IP30 pillar fabricated by RIE over-etching	Figure_13g.tif	Image
Fig. 14	EFTEM (Si-plasmon-loss-filtered) image of a NP of about 11 nm in diameter with a single almost sphe- rical Si ND (diameter 2.5 nm) embedded in the oxide.	Figure_14.tif	Image
Fig. 15a	Influence of vertically asymmetric ND position on the SET current	Figure_15a.tif Fig-15_data.csv	lmage Data
Fig. 15b	Influence of the laterally shape of NDs on the SET current	Figure_15b.tif Fig-15b_Data.csv	lmage Data
Table I	Values for the effective NP diameter, the oxi-de thickness and number of NDs in the pillars of Fig. 13	Table_I.csv	Data

Used Abbreviations:

EFTEM	energy-filtered transmission electron microscopy
FET	field-effect transistor
HIM	helium ion microscope
kMC	kinetic Monte-Carlo (simulation tool)
ND	nanodot
NP	nanopillar
SET	single electron transistor
RIE	reactive ion etching

- RT room temperature
- RTA rapid thermal annealing
- TEM transmission electron microscope
- TRIDYN computer program for the dynamic simulation of ion irradiation effects in multi-component targets