WP7 Task 3 Current Activities

—A Warm-Up—

Peter Steinbach¹, Felicita Purnama Dewi Gernhardt ¹

¹Helmholtz-Zentrum Dresden-Rossendorf, Core Facility for Digital Infrastructure and Computing

11th October 2021

Member of the Helmholtz Association

P. Steinbach et al. | FWCC | http://www.hzdr.de

Adopt new algorithms and technologies for lossless and lossy data compression

- Looking for collaborators!
- hired RSE/data scientist
- started to look at first datasets

4 D b

Member of the Helmholtz Association P. Steinbach et al. | FWCC | http://www.hzdr.de

Data prototype: ROFEX

- Ultrafast electron beam X-ray computed tomography
- non-invasive investigation of dynamic processes

- electron beam is focussed towards a circular target
- periodically deflected with high frequency

ROFEX details

one timepoint: $256 \times 256 \times 12500$ of uint16 voxel intensities

- **ROFEX-III** raw data: $\approx 2 \ GByte/s$
- one measurement campaign:
 25-50 samples of 15 s each
- per year: max 10 campaigns 15 TB/year
- reconstructed data \approx raw data
- reconstructed data as fxv File Format

4 D b

Lossy Experiments: LibAPR¹

https://github.com/AdaptiveParticles/LibAPR

- Library for producing and processing on the Adaptive Particle Representation (APR)
- APR replaces pixels with particles
- Particles are a generalization of pixels:
 - Points in space that carry intensity
 - Can be places wherever image content requires
 - May have different sizes in different parts of the image (size define resolution)

¹possible alternatives: https://www.computationalimaging.org/publications/acorn/

ROFEX: rotating shovel

https://github.com/AdaptiveParticles/LibAPR

- Library for producing and processing on the Adaptive Particle Representation (APR)
- APR replaces pixels with particles
- Particles are a generalization of pixels:
 - Points in space that carry intensity
 - Can be places wherever image content requires
 - May have different sizes in different parts of the image (size define resolution)

LibAPR on ROFEX: chaos is troubling

PyLibAPR - Compression

	N		• • •	X	
Slice: 513/1024, 256x236 x=5, y=248, z=512, value=0 gradient ti signa thr intensity t	Use Parameters hereshold: 0.0 heresh	Silder Max 2000.0 \$ 15000.0 \$ 10000.0 \$	Silce: 513/1024, 256x256 x=126, y=254, z=512, value=48410 gradient threshol sigma threshold intensity threshol	W Use Parameters adi 1286.5 13297.3 adi 6432.4	Slider Max 2 2000.0 \$ 1 15000.0 \$ 1 0000.0 \$

Size of APR file: 55.1MB

< ---->

LibAPR on ROFEX: intensities

PyLibAPR - Decompression

LibAPR on ROFEX: Current Status of Lossy Compression

- currently working with downstream pipeline
- need to find metrics/observables/checks that show how we broke the dataset
- LibAPR = part of a pipeline
- how to encode pipeline?
 - software: hdf5 vs zarr vs custom
 - data curation: which format will exist in 5-10-15 years?
 - decompress pipeline on any OS

Talking about Datasets?

Challenges

- bridging the communication gap: RSE / data scientists <-> domain scientist
- clearing out misconceptions, expectations and reinventions
- identify domain specific terminology

Advantages

LEAPS community has datasets available: https://zenodo.org/record/4558708#.YMhzwSaxVrM

4 D b

Mini Data-Sheets² by Felicata Gernhardt

²inspired by https://arxiv.org/abs/1803.09010

4 E b

P. Steinbach et al. | FWCC | http://www.hzdr.de

Page 10/11

- started to work on datasets close to us (local, Expands dataset)
- technology, methods and social challenges
- identification of downstream goals/quality/performance crucial

Questions, Comments or Feedback ?! Welcoming collaborators!

4 D b

Member of the Helmholtz Association P. Steinbach et al. | FWCC | http://www.hzdr.de