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Summary

Abstract
English:

This thesis develops all components necessary for the coupling of an atomic physics solver to
a particle in a cell-simulation. I develop an new memory and parallelization optimized atomic
rate solver, an adaptive histogram and a new to represent atomic states, in order to make
modeling atomic physics directly coupled to a PIC-simulation feasible.

Abstract
Deutsch:
Diese Arbeit entwickelt all komponenten die notwendig sind for die Kupplung der atomphysik
an eine PIC-Simulation. Ich entwickle dafür einen neuen specuher und parallelisierungs op-
timierten atomaren Raten Gleichungs solver, ein neues adaptive histogram und eine neue
rpresentation von atomaren Zuständen, um die direkte Kupplung von atom physics and eine
PIC-Simulation möglich zu machen.
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1 Introduction

1.1 Particle in Cell Algorithm

Particle in Cell, or short PIC, is a general algorithm used to simulate plasmas. The basic idea of
PIC-algorithms is to model a plasma using two components, a discretized electromagnetic field
and samples of the phase space density distribution, the so called macro-particles. Each macro
particle has at least a position, a momentum, and a charge to mass ratio and may move freely
in space. Macro particles are accelerated or decelerated according to the Lorentz-force, due to
the electromagnetic field at their position. In pure PIC codes there are no interactions directly
between macro-particles. Macro-particles instead interact indirectly over the electromagnetic
field between cells and not at all in the same cell. The electromagnetic fields in contrast
are discretized on grid points and updated by a Maxwell solver. A PIC-simulation time step

Figure 1.1: The four steps of the PIC-cycle

usually consists of four distinct steps,

1. Force calculation

Interpolation of electromagnetic fields from the grid points to the macro particle position.

2. Particle pusher
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Change of momentum and position of all macro particles due to the forces calculated in
the previous step.

3. current deposition

Deposition of the current caused by macro particle movement to grid points.

4. field solver

Update of the 𝐸⃗ and 𝐵⃗ field values at every grid point based on neighboring grid points
field values and macro particle currents.

The main advantage PIC simulation have against other plasma simulation techniques is their
ability to scale with the computational power available while correctly modeling complex phase
space plasmas. PIC-simulations sample the complete phase space and are able to model non
linear plasma process as well as laser plasma interactions and non linear optics, while being
more performant than Vlasov or particle-particle solvers. PIC-simulations are therefore the
tool of choice for modeling laser generated plasmas.
The main disadvantages of PIC-simulations against other plasma simulations is the close cou-
pling of time and space resolution due to the Courant–Friedrichs–Lewy condition. In conjunc-
tion with the comparatively small maximum cell sizes necessary to correctly model the macro
particles dynamics. The resulting small time step sizes increase the length of computations
significantly.

1.2 GPU Architecture

There are essentially two mayor peculiarities that must be considered when programming
for GPU. Firstly, in contrast to CPUs, GPUs are optimized for working on a large number
of parallel tasks. They are therefore not structured around a small number of threads, but
around streaming multiprocessors, short SM. Each SM is designed to take 100s of the same
task and distribute them on a set of execution units. The individual execution units of GPUs
have a comparatively lower clock frequency, are less flexible and lack the extensive data flow
and precaching mechanisms of standard CPU cores. This alleviated by there being many
more of them many more, ≤ 10000 vs. ≤ 128, enabling a much higher overall output if all
the execution units are utilized. Which brings us to one of the central challenges of utilizing
GPUs, we must be able to distribute our task on as many execution units as possible to fully
utilize the high throughput of GPUs.. Programs that want to use the much larger compute
power of GPUs must therefore be nearly completely parallel.
The second peculiarity that must be recognized is the fact that GPUs have considerably less
memory available close to the actual execution units, due to devoting more of their transistor
budget to computation than a standard CPU. It is therefore imperative that the memory that
is available on each memory hierarchy levels is used as efficiently as possible.
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The memory hierarchy of GPUs consist of two mayor levels. Most distant from the GPU
execution units itself, is the global device memory, with access latencies in the order of 600
clock cycles. This memory can be accessed by all SMs of a GPU and has maximum size of
currently about 40GB, Nvidia A100 GPUs, large but not overly so, especially compared to the
several 100s of GB of host memory most compute nodes possess.
The next step up in access is the on die shared memory, which is accessible from all SM
and can be up to 100 times faster[21] faster to access than global device memory, but is also
considerably smaller, currently a maximum of 40MB per GPU, Nvidia A100. Lower levels
of memory exists with the SM bound L1 memory, which may be accessed even faster, but
also is considerably smaller with a current maximum size of 192KB per SM and must be split
between L1 cache and SM execution units shared memory.

1.3 The need for atomic Physics in PIC-simulations

The modeling of atomic physics in PIC-simulations has many applications. From probing
plasma conditions, calculating opacities, to laser absorption, all these processes directly or
indirectly depend on atomic physics process and the current atomic state distribution of a
plasma. Correctly modeling the atomic states and process is therefore essential in understand-
ing process in high density plasmas.
Unfortunately the typical implementations of atomic physics in PIC-Simulations only model
atomic physics process from and to ground states[22][23]. This limits PIC-simulations sig-
nificantly. For example it is to be expected that the missing transition lead to significantly
changed ionization ratio[1]. This is especially problematic for modeling the laser absorption,
due to absorption rate being self consistently coupled to the free electron density.
In addition many instability mechanism depend on the hydrodynamic pressure, for example
RT-like or the free electron flow, e.g. Weibel-like which are directly linked to the free electron
density. For high laser intensities, both of these effects have growth rates in the neighborhood
of the laser pulse length and consequently may cause transient effects, that must be exactly
modeled and require accurate density predictions and therefore ionization dynamic.
Another possible application of detailed atomic physics models is XFEL like probing of plasma
conditions, for which not only the charge state but also the actual electron configuration
becomes relevant[20] which is typically completely missing from PIC-simulations, or is only
available as not self consistent look-up tables assuming some sort of equilibrium like conditions.
The lack of an accurate modeling of atomic physics in PIC is therefore becoming a hindrance
in several applications of plasma simulations. Especially for methods aimed at probing the
dynamics of the opacity during or short after a short laser pulse, when the plasma is far from
equilibrium need an accurate model of transient atomic physics[24]. We therefore need a better
model for atomic physics in PIC-Simulations.





2 Atomic States

Atomic physics relies on a set of states for its description and as such an state basis has to
be chosen before a discussion of atomic dynamics is possible. Choosing this state basis to
minimize memory usage is of critical importance due to the comparatively large amount of
memory required to store atomic states and the already comparatively large memory usage of
PIC-simulations.
We explore different atomic state basis and optimize the representation of atomic states to
reduce the memory required to the absolute minimum while still representing the important
physics.

2.1 Nomenclature and Notation

2.1.1 Nomenclature

Before we begin I want to introduce a few basic definitions, that deviate from the common
usage or might be unknown. The first of such being the term ion, in the following ion describes
an atomic core and its bound electrons, irrespective of the overall charge. A neutral atom, a
completely ionized atomic core and a partially ionized ion are therefore all described as ions.
This follows the general convention in literature and shortens descriptions, as well as reflecting
the identical theoretical description used for this particles.
Secondly, the term atomic state of an ion refers to an electron hull configuration or a number
of similar configurations combined. While not strictly speaking the correct term, since we
neither limit us to atoms, nor are these necessarily quantum mechanical states, this term is
intended to refer to any internal state of an ion that is important for Atomic physics.
Thirdly, the charge state, how many electrons are bound to the atomic core, is not regarded
as a property separate of the atomic state of an ion. Instead it is used as a derived quantity
of the fundamental atomic state, important due to its influence on particle trajectory.
Lastly, the the actual quantum mechanical state of a bound electron is described as the electron
state.

2.1.2 Notation

The symbol # is used to denote a number or count of something.
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2.2 Modeling the atomic state

2.2.1 Modeling the atomic state of a single ion

To specify the electron hull configuration, the number of electrons (charge state) and electrons
states occupied must be given. Describing the number of electrons is easy, describing the
electron state can be difficult, as will be shown in the following.
The electron states of the hydrogen ion are analytically known, but ions with more than one
electron do not have analytic eigenstates due to the electron-electron interactions. The multi-
electron system electron states must therefore be approximated. Numerical solutions of these
systems do exist, but computing them requires time and is generally only necessary if high
spectroscopic accuracy is required[1], the lower accuracy obtainable without using exact states
being sufficient for now. Instead, we use the hydrogen electron states as a basis with the
implicit assumption that the electron-electron interaction and external contributions are much
smaller than the central field. To somewhat account for screening effects and electron-electron
interactions a semi empirical mean field approximation can be used, modifying the energy of
all states based on the occupation numbers of all lower states. These approximate states are
called screened hydrogen states.
These electron states provide a general description that is mostly complete, meaning they
cover a wide energy range and most atomic physics initial and final states. In addition, they
also are easy to compute and require relatively few memory to store. How much memory is
exactly necessary can be estimated by the number # of possible states and the number of
bits necessary to store an unsigned integer that large, the basic idea being that the minimal
memory storage solution would be a integer index assigned to all distinct states. An upper
limit of the number of super configurations is derived in the following chapter.

2.2.2 Number of electron states

A hydrogen ion electron state in a plasma can be specified by four quantum numbers:

1 ≤𝑛 ≤ 𝑛max , 𝑛 ∈ N/{0}

0 ≤𝑙 ≤ 𝑛− 1 , 𝑙 ∈ N

−𝑙 ≤𝑚𝑙 ≤ 𝑙 ,𝑚𝑙 ∈ Z

𝑠 ∈
{︂

1

2
,−1

2

}︂
These states are further grouped into levels, the level 𝑛 containing 𝑔(𝑛) electron states with
the principal quantum number 𝑛, 𝑔(𝑛) being the degeneracy of this level.
In contrast to the familiar atomic physics model, the principal quantum number 𝑛 has an
upper limit 𝑛max due to potential depression effects in plasmas caused by the proximity of
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other ions. Only electron states up to 𝑛max remain bound, typical value 𝑛max ≈ 6 [1], with
𝑛max depending on the ionization potential depression model used, the plasma conditions and
ions in question.
Based on this we can calculate the number of electron states #electron states(𝑛max) as the sum
over the degeneracy 𝑔(𝑛) of all existing atomic levels,

#electron states =
𝑛max∑︁
𝑛=1

𝑔(𝑛) (2.1)

with 𝑔(𝑛) having the value,

𝑔(𝑛) =
𝑛−1∑︁
𝑙=0

+𝑙∑︁
𝑚𝑙=−𝑙

1
2∑︁

𝑠=− 1
2

1 =
𝑛−1∑︁
𝑙=0

+𝑙∑︁
𝑚𝑙=−𝑙

2 = 2 ·
𝑛−1∑︁
𝑙=0

(2 · 𝑙 + 1) = 2 ·

(︃
𝑛−1∑︁
𝑙=0

2 · 𝑙 +
𝑛−1∑︁
𝑙=0

1

)︃
(2.2)

= 2 ·

(︃
2 ·

(︃
𝑛−1∑︁
𝑙=1

𝑙

)︃
+ 𝑛

)︃
Gaus

∑︀
= 2 ·

(︂
�2 ·

(𝑛− 1) · ((𝑛− 1) + 1)

�2
+ 𝑛

)︂
(2.3)

𝑔(𝑛) = 2 · 𝑛2 (2.4)

substituting results in following equation

#electron states =
𝑛max∑︁
𝑛=1

2 · 𝑛2 (2.5)

which is double the square pyramidal number and can be calculated directly,

#electron states = 2 ·

(︃
1

3
· (2 · 𝑛max + 1) ·

𝑛max∑︁
𝑛=1

𝑛

)︃
(2.6)

Gaus
∑︀

= �2 ·
(︂

1

3
· (2 · 𝑛max + 1) · (𝑛max + 1) · 𝑛max

�2

)︂
(2.7)

=
2 · 𝑛3

max + 3 · 𝑛2
max + 𝑛max

3
(2.8)

For example for 𝑛max = 6 there are #electron states = 182 different electron states.
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Figure 2.1: Number of electron states for different 𝑛max

2.2.3 Number of configurations

For a single electron system the number of atomic states is equal to the number of electron
states. Following the Pauli exclusion principle and indistinguishability, in many electron sys-
tem we need to distribute 𝑖 electrons on #electron states possible electron states without consid-
ering the sequence and without repetition. This is a bit of a mixed blessing, since it limits the
number of states compared to independent electrons, but also makes counting them more dif-
ficult. The number of possible distinct configurations can be calculated with the the binomial
coefficient.
Based on this we get the total number of atomic States #, for an ion of atomic number 𝑍.

# =
𝑍∑︁
𝑖=0

(︂
#electron states

𝑖

)︂
(2.9)

=
𝑍∑︁
𝑖=0

(︂2·𝑛3
max+3·𝑛2

max+𝑛max

3

𝑖

)︂
(2.10)

For the example of titanium with charge number Z = 22 and 𝑛max = 6, this yields:

#
𝑛max = 6;𝑍 = 22

=
22∑︁
𝑖=0

(︂
182

𝑖

)︂
=

22∑︁
𝑖=0

182!

(182− 𝑖)! · 𝑖!
(2.11)

#
𝑛max = 6;𝑍 = 22

≈ 1, 44 · 1028 (2.12)
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Figure 2.2: Number of atomic states of the atomic number 𝑍, for 𝑛max = 6

A cusory glance on equation 2.11 and the figure 2.2 shows the enormous number of configura-
tions that exist for every but the lowest 𝑍 ions.
This demonstrates a problem generally encountered in modeling atomic states. The number
of atomic states is so large that even representing distributions over all of them becomes a
challenge, never mind calculating their dynamics. Storing a vector with that many components
as a 0-dimensional atomic state distribution would already exceed the available storage in even
HPC-clusters by several orders of magnitudes. It is therefore necessary to reduce the number
of states that we distinguish between.
Possible solutions would be:

1. sacrifice general completeness

We want to able to model a very wide range of plasma conditions, sacrificing general
completeness is therefore not an option.

2. group atomic states

group by energy of states: The energy of a given screened hydrogen atomic state does
not depend on the complete configuration, but rather only on the occupation numbers
𝑁𝑖 of each level 𝑖, due to the assumptions and simplifications made. Grouping states
by energy, into a version of so called super configurations [1], is therefore natural. This
grouping tracks super configurations 𝑁⃗ = (𝑁1, 𝑁2, . . . , 𝑁𝑛max) instead of configurations
without large loss of detail, at the cost of having to assume a distribution if the angular
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momentum is required.

To see whether super configurations actually reduce our problem enough such that we can
represent them in GPU memory, we take a look at the number of super configurations that
exist.

2.2.4 Number of super configurations

Each levels’ occupation number 𝑁𝑛 is limited by the number of electron states 𝑔(𝑛) for this
level, since each electron states can only be occupied by one or zero electrons according to the
Pauli principle.

0 ≤ 𝑁𝑛 ≤ 𝑔(𝑛) (2.13)

Each level 𝑛 therefore has 𝑔(𝑛) + 1 different occupation states, resulting in #𝑁⃗ different
occupation vectors possible.

#𝑁⃗ =
𝑛max∏︁
𝑛=1

(𝑔(𝑛) + 1) =
𝑛max∏︁
𝑛=1

(︀
2 · 𝑛2 + 1

)︀
(2.14)

𝑛max = 6
= 3 · 9 · 19 · 33 · 51 · 73 = 63‘026‘667 (2.15)

Figure 2.3: combinatorial tree of super configurations

This calculation of #𝑁⃗ does not include the global limit on the number of electrons,

𝑛max∑︁
𝑛=1

𝑁𝑛

!
≤ 𝑍 (2.16)

Specifically we included super configurations with up to #electron states(𝑛) electrons in each level
𝑛, already possibly more electrons than are actually available, in each level. #𝑁⃗ is therefore
only an upper limit of the actual number of possible super configurations for a given 𝑍 and
𝑛max.
This limit can be somewhat improved by replacing 𝑔(𝑛) in equation 2.14 with the minimum
of 𝑍 and 𝑔(𝑛), thereby limiting each levels occupation number to the maximum number of
electrons available. This eliminates some unphysical super configurations without introducing
an interdependence between occupation numbers, something that will become important later(
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see 2.3.1).

#𝑁⃗ =
𝑛max∏︁
𝑛=1

(min(𝑔(𝑛), 𝑍) + 1) (2.17)

Nevertheless this does not solve the underlying issue of containing unphysical configurations,
only reduces its impact.

Figure 2.4: Number of super configurations based on equations 2.14 and 2.17 for 𝑍 = 22

The resulting upper limit of the number of physical super configurations is small enough to
be represented in a 3-dimensional simulation and super configurations are therefore used as
compound atomic states. How much memory is actually required for this will be discussed in
sections 2.3.1 and 2.3.2

2.2.4.1 Additional ideas and dead ends

It is possible to get a better estimate of the number of physical super configurations if further
external dependences and an interdependence between occupation numbers are acceptable. I
will list a few ides in that direction but the solution detailed so far is good enough for our
current purpose.
Ideally we would find way to count only those states that also fulfill the following condition,

𝑛max∑︁
𝑛=0

𝑁𝑛 ≤ 𝑍 (2.18)

Unfortunately this condition introduces an interdependence between different level’s occupa-
tion numbers, thus making counting the number of states much more difficult.
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∙ Leaving the last occupation number unspecified and calculating it using the total number
of electrons (𝑍− 𝑞) for an ion of atomic number 𝑍 and charge +𝑞, would in theory allow
some improvements, but would introduce an external dependence on a variable value as
well as still including unphysical super configurations.

𝑛max∑︁
𝑛=0

𝑁𝑛
!
= 𝑍 − 𝑞 (2.19)

𝑁𝑛max = (𝑍 − 𝑞)−
𝑛max−1∑︁
𝑛=0

𝑁𝑛 (2.20)

Specifically super configurations whose sum of occupation numbers of levels up to 𝑛max−1

are already larger than 𝑍 would result in a negative occupation number 𝑁𝑛max , one would
have to check for explicitly.

∙ One approach that might be successful is a variation of the multinomial coefficient. The
multinomial coefficient itself is not directly applicable, since it does not allow the presence
of not filled states.

∙ One might be tempted to use the familiar answer for distribution of 𝑖 electrons on
𝑛max different levels, without regard for sequence and without repetition and sum these
numbers over all possible charge states.

# =
𝑍∑︁
𝑖=0

(︂
𝑛max + (𝑍 − 𝑞)− 1

𝑛max

)︂
(2.21)

Unfortunately this would include super configurations violating equation 2.13, for exam-
ple the super configuration 𝑁⃗ = (𝑍 − 𝑞, 0, 0, ...)T.

2.3 Storing the atomic state

2.3.1 Indexing of super configurations

Atomic states are likely to add a considerable amount of required memory to already large
PIC-Simulations, due to the large number of states existing, it is therefore essential to reduce
the memory required to store atomic states.
The most memory efficient way to store states is always an index, due to it being bijective,
but this often requires an index-Atomic State conversion table. This conversion table must
be stored and requires memory itself, negating some of the savings, unless it is possible to
convert the index analytically to the atomic state it represents. This is in fact possible with
the counting scheme detailed in section 2.2.4.
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The counting scheme we used above relied on the independence of different occupation numbers
by building a large combinatorial tree with the value of each levels’ occupation number as a
branching point at the corresponding branching level of the tree. This counting scheme also
allows us to enumerate the states easily.

index occupation numbers
𝑁1 𝑁2 𝑁3 𝑁4 𝑁5

0 0 0 0 0 0
1 1 0 0 0 0
2 2 0 0 0 0
3 0 1 0 0 0
4 1 1 0 0 0
5 2 1 0 0 0
6 0 2 0 0 0
7 1 2 0 0 0
8 2 2 0 0 0
9 0 3 0 0 0
10 1 3 0 0 0
11 2 3 0 0 0
...

...
...

...
...

...
24 0 8 0 0 0
25 1 8 0 0 0
26 2 8 0 0 0
27 0 0 1 0 0
28 1 0 1 0 0
29 2 0 1 0 0
...

...
...

...
...

...
510 0 8 18 0 0
511 1 8 18 0 0
512 2 8 18 0 0
513 0 0 0 1 0

...
...

...
...

...
...

11798 2 8 18 22 0
11799 0 0 0 0 1

...
...

...
...

...
...

Table 2.1: combinatorial table
built according to enumeration
scheme, for 𝑍 = 22 and 𝑛max = 5

Starting with the completely ionized state, 𝑁⃗ = (0, 0, ...)

as state 0, we increase the lowest level occupation number
by one until it reaches its maximum value, each step in-
creasing the index by one. Upon reaching the maximum
of the lowest occupation number, it wraps around and the
next higher level’s occupation number is increased by one,
thereby reaching a new atomic state. This principle is re-
peated, increasing the next highest occupation number by
one whenever an occupation number reaches its maximum
and wraps around, until the last occupation number reaches
its maximum, 𝑁𝑛max ≤ min(𝑔(𝑛), 𝑍).

This enumeration scheme traverses every physical atomic
state and allows easy direct calculation of the index corre-
sponding to a given occupation number vector. The index
calculation is based on the fact that the number of steps it
takes to increase a the occupation number of a given level
by one is always equal to the number of possible occupa-
tion number vectors of current length l - 1, since there are
always that many steps in between. This number can be
easily calculated using equation 2.17, due to each levels oc-
cupation number being independent of all others. Since it
takes 𝑁 steps to reach the value of 𝑁 starting from 0 and
increasing x by one and lower occupation number values
are simply further steps after reaching the last occupation
number value, the equation 2.23 follows.

# = 𝑁1 + 𝑁2 · 3 + 𝑁3 · 3 · 9 + . . . (2.22)

=
𝑛max∑︁
𝑖=1

(︃
𝑁𝑖 ·

𝑖−1∏︁
𝑗=1

(min(𝑔(𝑗), 𝑍) + 1)

)︃
(2.23)

This function is bijective, since it is based on a table con-
taining no repeated atomic states, and can therefore be in-
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verted using whole number division.

𝑁𝑘 = div

(︃
#−

𝑛max∑︁
𝑖=𝑘+1

[︃
𝑁𝑖 ·

𝑖−1∏︁
𝑗=1

(min(𝑔(𝑗), 𝑍) + 1)

]︃
,
𝑘−1∏︁
𝑖=1

(min(𝑔(𝑖), 𝑍) + 1)

)︃
(2.24)

This allows an analytic conversion between index and occu-
pation number vector, without actually storing the table.

Equation 2.23 is consistent with the in the previous section derived equation of the total
number of super configurations, equation 2.17, this is shown in section A.

The number of indices required also defines the memory required to store one index per ion.
The number of bits required can be calculated as the logarithm of base 2 of the number of
super configurations.
2.2

data type length (𝑛max)max, Z=
bit byte 1 7 14 22

uint8_t 8 1 8 3 2 2
uint16_t 16 2 16 5 4 4
uint32_t 32 4 32 10 8 8
uint64_t 64 8 64 21 17 16

Table 2.2: short table listing common c++ data types and possible 𝑛max values for different
𝑍 values

Table 2.2 gives the maximum 𝑛max possible for different atomic number and integer data
types. For hydrogen, 𝑍 = 1, an uint8_t, allows representation of all states for an 𝑛max = 6,
while in the case of Nitrogen double the memory only allows representation of all states up
to 𝑛max = 5. Representing all states up to 𝑛max = 6 for Nitrogen requires an uint32_t. An
uint64_t is sufficient to represent all elements up to uranium for 𝑛max = 6. If very high 𝑛max

need to represented, typically 𝑛max ≈ 100 for astrophysical plasma densities, even for hydrogen
an uint64_t can be insufficient.

2.3.2 Atomic state representation

The previous sections described what atomic states we will be modeling, how many of them
there are and how we index them, what remains is the question how to represent them in the
framework of a PIC-simulation.
Fundamentally atomic states are properties of ions and as such can not be separated form
their respective physical particle. This creates a co dependence of ion density distributions
and atomic state distributions. To understand what to exactly this entails we will take a look
at the fundamental modeling used in PIC-simulations.
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Particles in PIC-simulations are modeled as a density in phase space. As such, the fundamental
object representing particles in PIC-simulations is a position and momentum dependent density
for a given particle species, and charge state in the case of ions. For an ion species, each such
point in phase space is also associated with the ions’ atomic states, forming an atomic state
distribution 𝑛⃗.
This density distribution is then being sampled by macro particles, sampling both the particle
density in the usual phase space as well as the associated atomic state distribution. Since
macro-ions correspond to the density equivalent of a large number of physical ions, their
sample typically contains a large number of atomic states, rather than a single atomic state.
The distribution associated with each macro particle sample only contains atomic states of a
single charge state, since macro-ions must have a defined charge state to be able to predict
their movement. The natural representation of atomic states is therefore storing a distribution
of all atomic states with the ions charge state in each macro-ion. Unfortunately this is not
currently practical due to the large amount of memory an atomic state distribution occupies,
see below for a detailed discussion.
Based on this a practical representation of atomic states requires

∙ less memory per macro particle than a full distribution

∙ a representation of the present distribution of atomic states

∙ a macro particle bound atomic state

To reduce the memory per macro particle we can smear the atomic state distribution over
several macro particles, up to the extreme of only storing one single atomic state in each
macro particle, as we will assume from now on. This does reduce the memory per particle but
does not reduce the memory per cell, since all present atomic states still need to be represented,
meaning a reduction of memory per macro particle is accompanied by a increase of the number
of macro ions per cell. It even increases the memory required per cell since each macro particle
stores additional data. This can be offset if the PIC-cell size and atomic states distribution
cell size are decoupled, only representing the complete atomic state distribution in multiples of
PIC-cells. This distributes the number of macro particles required over a large number of cells,
reducing the number of macro particles required per cell while still representing the complete
distribution. From a physic point of view this simply averages the atomic state distribution
over several PIC-cells, an acceptable compromise due to the relative small size of PIC-cells
especially for solid density plasmas.
In my implementation the atomic state distribution is only represented in a super cell, an al-
ready existing tiling of constant compound cells, each consisting of 256 cells, this is configurable
in PIConGPU. This covers about 1

2
of the complete distribution at 20 macro particles per cell,

for 𝑛max = 4, good enough since we expect most of these states to not be occupied. Since the
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computation is parallelized on worker level in PIConGPU on such a super cell, reusing this
exiting structure also allows us to retain much of the existing parallelization structures.

2.3.2.1 Memory required for an atomic state distribution

In principle an atomic state distribution is simply a histogram, with each entry corresponding
to one atomic state, and the histogram value being the relative density of this atomic state.
The representation of an histogram requiring the least memory is an array of the relative
densities, the corresponding atomic state being accessible via the index an entry corresponds
to. The total amount of memory required is dependent on both the memory required for each
entry of the vector and the number atomic states, simple multiply both to get the memory
required.
As a rough estimate let us assume that we want to represent at least 256 different density
values. To do so we need at least 8 bit of memory or 1 byte, this value was choosen since 1
byte is the typical minimum memory size a variable not boolean. Thus the total amount of
memory required for a atomic state distribution is simply how many atomic states there are
in this distribution in bytes.
Modeling the bare minimum of 4 atomic levels, 𝑛max = 4, there are about 10‘000 different
atomic states, depending on atomic number in question, resulting in about 10‘000 bytes of
memory required to represent the complete distribution.
A bare bone macro particle requires about 25 bytes of memory in comparison.

Typical minimal memory required per macro particle:
1 macro particle ≈ 3 · 4 byte + 3 · 4 byte

(position, 32 bit float) (momentum, 32 bit float)
+ 1 byte

(charge, 8 bit integer)

1 macro particle ≈ 25 byte
Additional memory is required for ionization and particle tracking.

While the complete atomic state distribution is distributed, according to charge state, over
several macro particles, each macro particle would have to store at least the partial atomic
state distribution corresponding to its charge state, rough estimate 1

𝑍
, with 𝑍 ≤ 82, even this

reduced distribution would increase substantially the memory required per macro particle, for
all but the highest charge states. Direct native representation of the atomic state distribution
in each macro particle is therefore not currently feasible, due to the large amount of memory
required.
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2.3.2.2 Additional ideas and dead ends

∙ Smart histograms

The memory required to store an atomic distribution can in principle be reduced by only
storing relative densities of atomic states actually present, but doing so requires us to
also store which atomic states are present. One possible solution to this is storing two
arrays on containing the data itself and a second containing the index each array element
corresponds to.

As was detailed in chapter 2.3.1 an index variable will require more memory than the
actual value being stored for every ion above lithium, 𝑍 = 3, 𝑛max = 4 see table 2.2.
Significant memory saving are therefore unlikely for atomic state distributions containing
more than a handful of atomic states. The expected typical number of atomic states
present changes with charge state and excitation of ions, but is expected to be relatively
large, making such an approach less useful.

∙ Description as a field

The approximate 10s of kilobytes of memory required for an atomic state distribution
is comparable to the memory required for all macro particles in a cell, typical expected
maximum of about ≈13 kilobytes of memory per cell in macro particles without atomic
physics.

Assuming titanium, 𝑍 = 22, and corresponding electrons only.

1 cell ≤ 22 · 1 macro-ion + 22 · 22 macro-electrons ≤ 506 · 25 byte
1 cell = 12650 byte

It therefore would in principle be possible to store one atomic state distribution per cell
as a vector field 𝑛⃗, each vector component holding the local density of an atomic state,
as has been done before, for example in scfly [3].

Based on this one might be tempted to bind the atomic state storage to cells instead of
macro particles. While seeming equivalent at first, this approach creates problems on
closer inspection, due to the atomic state not being particle bound.

While a convenient macroscopic quantity, this vector field description is not fundamental
in PIC. This becomes especially apparent when ion flows inside plasmas are considered
in combination with a discretized not moving vector field description.

Every flow of ions is coupled to an equivalent flow of atomic states, due to the atomic
states bound to these. To represent this flow it becomes necessary to move a portion of
the density of the atomic state distribution of one cell to another as ions move between
these cells. Since we did not attach the atomic state to specific particles we can not
move the exact part of the atomic state distribution these particles would have and are
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instead forced to use an average of the atomic states of all ions with one specific charge
state at a time. Therefore we essentially average every time step over all ions of one
charge state atomic states. We can not describe a history of atomic states following the
ions these states are actually physically attached to.

But especially in laser acceleration simulations distinguishing between the atomic states
of slow moving bulk ions and fast moving accelerated ions this is important. It is there-
fore not a good idea to use a vector field approach if actual trajectories of particles are
available, an insight this author also has needed quite a bit of time to realize. In plasma
simulations where trajectories are not directly available such as MHD-simulations, gradi-
ent flows can be used to mitigate this, but they would likely introduce further complexity
and should therefore be avoided in coupling atomic states to PIC.



3 Atomic State Dynamics

While there are several existing implementations of algorithms for solving for the atomic state
distribution, such as flyCHK[3], scFly[3] and the Los Alamos Code Suite[1], most of these
are not suitable for our purpose since they require assumptions not valid in our case, require
too much memory or are not easily parallelizable. The latter two being especially important
if PIC-Simulations are not to become too computationally demanding with the addition of
modeling atomic physics.
We therefore need to derive a new atomic rate equation solver, better suited for the coupling
to PIC-simulations. To be suitable such an algorithm has to fulfill two conditions.

∙ The memory an algorithm requires has to fit into the limited GPU memory to avoid very
long access times

∙ The algorithm must scale very well with parallelization, since GPU architecture are
optimized for massive parallelism

In addition, the coupling of an algorithm to PIC-Simulations should not increase the time per
PIC time step required massively, my goal being that a single simulation can be calculated in
a few days on HPC Clusters.
I will start with the analysis of several already existing algorithms solving for the atomic state
population and discuss in this context

∙ Which plasma conditions they assume.

∙ How much additional memory they require over just representing the atomic population
vector.

∙ How they can be parallelized.

Based on this analysis we will then derive an optimized new suitable algorithm.

3.1 Atomic Rate Equation

The time evolution of atomic states distributions is described by the rate equation, which, for
the benefit of the reader, will briefly be derived here.
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As the basis of our description assume some finite set of atomic states {𝑖}, which specific set
is not important here. For each of these we define a local number density 𝑛𝑖 of ions with the
atomic state 𝑖.

Abstracting from the specific set of atomic states used, we group the the atomic state number
densities 𝑛𝑖 into a vector 𝑛⃗ = (𝑛1, 𝑛2, . . . )

T, with each vector component corresponding to
one specific atomic state. This is the atomic state population density vector or short atomic
population vector [1], a basic quantity of atomic physics in plasmas.

Ions may change their atomic state, transitioning from its previous state 𝑖 to a new atomic
state 𝑗. This process is probabilistic in nature, with each individual ion having a probability
per time to change to a given new atomic state. Averaging over a large number of ions, the
rate at which the average state shifts from 𝑖 to 𝑗 can be described by the average rate 𝑅𝑖→𝑗,
which is the equivalent to the average rate with which an ion of atomic state 𝑖 changes to the
atomic state 𝑗 [1]. This rate of change is transition specific, but we are interested in the general
change of the atomic population vector, 𝑑

𝑑𝑡
𝑛⃗, due to transitions, since this is our fundamental

quantity.

The increase of number density of a given atomic state 𝑗 due to the transition 𝑖 → 𝑗 can be
calculated as, (︂

𝑑

𝑑𝑡
𝑛𝑗

)︂
𝑖→𝑗

= 𝑅𝑖→𝑗 · 𝑛𝑖 (3.1)

We of course also must include the reverse transition reducing the number density of the atomic
state 𝑗. (︂

𝑑

𝑑𝑡
𝑛𝑗

)︂
𝑗→𝑖

= −𝑅𝑗→𝑖 · 𝑛𝑗 (3.2)

To get the general rate of change 𝑑
𝑑𝑡
𝑛𝑗 due to atomic transitions we must consider all possible

transitions leading to and from a given atomic state 𝑗, resulting in,

𝑑

𝑑𝑡
𝑛𝑗 =

∑︁
𝑖∈{𝑖}/{𝑗}

(𝑅𝑖→𝑗 · 𝑛𝑖) +

⎛⎝−
⎛⎝ ∑︁

𝑖∈𝑛/{𝑗}

𝑅𝑗→𝑖

⎞⎠ · 𝑛𝑗

⎞⎠ (3.3)

This equation has the structure of matrix multiplication and such can be rewritten using
𝑅𝑗𝑗 = −

∑︀
𝑖∈{𝑛}/{𝑗}𝑅𝑗→𝑖 and 𝑅𝑗𝑖 = 𝑅𝑖→𝑗to,

𝑑

𝑑𝑡
𝑛𝑗 =

∑︁
𝑖∈{𝑖}/{𝑗}

(𝑅𝑖→𝑗 · 𝑛𝑖) + 𝑅𝑗𝑗 · 𝑛𝑗 =
∑︁
𝑖∈{𝑖}

(𝑅𝑗𝑖 · 𝑛𝑖) (3.4)

𝑑

𝑑𝑡
𝑛⃗ = 𝑅 · 𝑛⃗ (3.5)

This is the so called rate equation of atomic physics[1], or atomic rate equation in short.
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3.2 Rate matrix

The rate matrix describes the total rate of transition from one atomic state to another. Its
elements do not describe monolithic transitions, but rather a compound rate built from several
separate physical processes rates starting with the same atomic state and ending with the same
state[1].
The fundamental process that make up the rate matrix elements can be grouped into two
major groups,

∙ Spontaneous processes

Spontaneous process are not directly caused by a singular trigger, instead they are purely
probabilistic and may happen at every point of time.

This does not mean that they are not be caused by an external influence, only that the
cause must be practical constant on the atomic physics process time scale. Examples
of such are process are deexcitations due to slow external fields perturbing the atomic
potential, auto ionization of electrons due to coulomb wall tunneling and deexcitations
due to atomic state mixture.

Since these process feature no interaction partner whose energy may be reduced and en-
ergy is conserved, they never increase the total energy of an ion. The rate of spontaneous
process by definition, only depends on the atomic structure of an ion and/or continuum
interactions, allowing us easily tabulate them, due to the low number of parameters and
correspondingly small memory footprint of these tables[15].

∙ Interaction processes

Interaction process in contrast are triggered by a singular external interaction, causing
an ion to change its atomic state. Since interaction process by definition only happen if
an interaction takes place, they are dependent on the interaction frequency 𝜔I.

With the interaction frequency of a stationary ion and a flow of uniformly distributed
interaction partner of density 𝑓I, all moving with the velocity 𝑣⃗rel being,

𝑉̇I = 𝜎 · 𝑣⃗rel (3.6)

⇒𝜔I = 𝑓I · 𝑉̇I (3.7)

𝑉̇I . . . interaction volume per time
𝜎 . . . cross section
𝑣⃗rel . . . relative velocity of interaction partners
𝑓I . . . interaction partner density
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Based on this we can derive the local rate for a given interaction process 𝑝, using the
interaction partner’s and local spectrum[1].

𝑅𝑖→𝑗,𝑝(𝑟⃗, 𝑡) =

∫︁
𝐸

𝜎𝑖→𝑗,𝑝(𝐸) · |𝑣⃗rel(𝐸, 𝑟⃗, 𝑡)| · 𝑓(𝐸, 𝑟⃗, 𝑡)𝑑𝐸 (3.8)

𝑅𝑖→𝑗,𝑝(𝑟⃗) . . . local average rate of the atomic process 𝑝, from the atomic stat 𝑖 to state 𝑗

𝐸 . . . energy of the interaction partner
𝜎𝑖→𝑗,𝑝(𝐸) . . . cross section of the process 𝑝 from the atomic state 𝑖 to the state 𝑗

𝑣⃗rel . . . relative velocity of the interaction partner and the ion
𝑓(𝐸) . . . spectral density of the interaction partner
𝑟⃗ . . . position
𝑡 . . . time

For electrons and using the assumption of ions to moving much slower than electrons,
this takes the form[1],

𝑅𝑖→𝑗,𝑝(𝑟⃗, 𝑡) =

∫︁ 𝐸max

0

𝜎𝑖→𝑗,𝑝(𝐸) · |𝑣⃗𝑒(𝐸)| · 𝑓(𝐸, 𝑟⃗, 𝑡)𝑑𝐸 (3.9)

𝑣⃗𝑒 . . . electron velocity

If the interaction partner is a photon instead, equation 3.8 takes the form[1],

𝑅𝑖→𝑗,𝑝(𝑟⃗, 𝑡) =

∫︁
𝜎𝑖→𝑗,𝑝(𝜈) · 𝐼(𝜈, 𝑟⃗, 𝑡) · 1

ℎ𝜈
𝑑𝜈 (3.10)

𝜈 . . . frequency of radiation
ℎ . . . Planck constant
𝐼 . . . spectral radiation intensity

The dependence of interaction rates on the interaction partners spectrum, makes tab-
ulation of interaction rates for general spectra unfeasible, due to the high number of
parameters necessary to describe everything but the easiest spectra. In contrast to spon-
taneous process, interaction process may increase as well as decrease an ions energy, since
energy conservation may be satisfied by changing the interaction partner’s energy.

3.2.1 Rate calculation in PIC simulations

∙ Spontaneous processes

For spontaneous processes the rate may be provided directly as an input file to PIC-
simulation. This input file must be stored in device memory, due to its large size of up
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to several MB, but small subsection may be loaded into shared memory one at a time
to reduce access latencies.

∙ Electron interaction

For electron interactions instead of rates, only the oscillator strength of each transition
(𝑖 → 𝑗) can be provided, due to their dependence on local plasma conditions. These
should be stored in device memory, again due to the relatively large size, with subsection
being loaded into shared memory. The cross sections can then be calculated for each
energy bin of the histogram using the semi empirical cross section algorithms of FlyCHK
and scFly[3], based on the transition’s oscillator strength.

This is done only on the super cell level since resolution of the rate matrix should be the
same as the atomic state distribution resolution, which is limited to one super cell due
to memory constrains, see chapter 2.3 for more information.

∙ Radiation interactions

Radiation interactions can not currently be modeled, since the spectral intensity required
is not practically available in PIC-simulations.

PIC-simulations do not resolve the frequency of radiation fields, only current overall
field strengths, which means that the local spectral intensity is not directly available.
Spectral information would in theory be available using Fourier transformations, but
Fourier transformations are computational very expensive and therefore unfeasible.

In the future high frequency radiation, x-ray and up, process may be added relatively
easily, modeled using binary collision of macro-photons and macro-ions, with binary col-
lision algorithms currently being implemented in PIConGPU and macro-photons already
implemented. Lower frequencies process are more problematic, due to the presence of the
driving laser in this frequency band. This laser is modeled in PIC as a time dependent
field, preventing us from adding macro-photons representing the same radiation without
closely coupling them to the radiation field itself. How such a coupling would work, or
if it even is possible, is an open question. Alternatively a continuum description might
be possible, but this too is an area of ongoing research.

3.3 Solving the atomic rate equation

At a glance the atomic rate equation(3.5) seems to be rather simple to solve, appearing to
be a first order linear differential equation only, but in this case appearances are deceiving.
Neither is the rate Matrix 𝑅 in general constant in time, which would make the equation
analytically solvable, nor is it strictly linear, since 𝑅 does in fact indirectly depend on the
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atomic population vector 𝑛⃗ as will be discussed in section 4. As such, solving the general
atomic rate equation is not trivial.

There are different general approaches for solvers of the rate equation, each based on different
assumptions of plasma conditions, we will be discussing these approaches in the following
section.

3.3.1 Solver Approaches

This section is intended to give the reader an overview of some standard approaches and
introduce several important techniques. While many of the different approaches will turn
out to not be applicable to the general case, they are useful for validation, comparisons and
optimization and are therefore included here. Experienced readers can skip directly to the
section detailing time dependent solvers, section 3.3.1.6.

We will start with the most restrictive plasma condition assumptions and piecewise relax them
until we reach assumptions compatible with our goals.

3.3.1.1 Global thermal equilibrium, TE

While PIC-Simulation are rarely done under the assumption of TE, TE conditions allow to
solve for the atomic population vector analytically, making it very useful as an analytical so-
lution to compare to and often used as the first step of validation of solvers. In addition TE
solvers require comparatively few computational resources, making them the least expensive
option, both in memory and compute time, to model atomic physics, even if severely con-
strained by its assumptions. Since standard implementations of this algorithm are sequential
we will also derive a parallelized version to be used in validations of the later derived more
general solvers.

TE solver may also be generalized to local thermal equilibrium conditions and as such I am
using this section to introduce the basic algorithm first, before generalizing it in the next
section.

In the case of a global equilibrium, it is possible calculate the atomic population vector without
using the atomic rate equation (3.5). Instead we can describe the plasma’s atomic states as an
ensemble of internal states of a system coupled to thermal bath of known temperature 𝑇 and
use the atomic states’ energy and multiplicity to solve for the stable state atomic population
vector using the canonical ensemble. Doing so [1] gives us the relative abundance, ratio between
states abundances, between neighboring charge states using the Saha equation[1]

𝑁𝑖+1

𝑁𝑖

· 𝑛𝑒 = 2 ·
(︂

2𝜋𝑚𝑒𝑘B𝑇

ℎ2

)︂ 3
2

· 𝑍𝑖+1(𝑇 )

𝑍𝑖(𝑇 )
· 𝑒−Δ𝐸𝑖/(𝑘B𝑇 ) (3.11)
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𝑁𝑖 . . . Number of ions with the charge state 𝑖

𝑛𝑒 . . . Electron number density
𝑇 . . . Temperature of the plasma
𝑍𝑖 . . . partition function of the charge state 𝑖

∆𝐸𝑖 . . . Ionization energy of charge state 𝑖

𝑘B . . . Boltzman constant
with [1]

𝑍𝑖 =
∑︁
𝑗∈{𝑏}𝑖

𝑔𝑗 · 𝑒−(𝐸𝑗−𝐸0
𝑖 )/(𝑘B𝑇 ) (3.12)

{𝑏}𝑖 . . . set of bound state of the charge state 𝑖

𝑔𝑗 . . . statistical weight of the bound state 𝑗

𝐸0
𝑖 . . . ground state energy of the charge state 𝑖

𝐸𝑗 . . . energy of bound state 𝑗

and the relative abundance of bound atomic states of a given charge state[1],

𝑛𝑖

𝑛𝑗

=
𝑔𝑖
𝑔𝑗
𝑒
−

(𝐸𝑖−𝐸𝑗)
𝑘B·𝑇 (3.13)

𝑔𝑖 . . . statistical weight of the bound state 𝑖

𝐸𝑖 . . . energy of bound state 𝑖

These equations only specify the relative abundance, meaning that for a given solution of the
atomic population vector 𝑛⃗, multiples of it 𝑛⃗′ = 𝜆 · 𝑛⃗ are also solutions. This ambiguity can
be resolved using the conservation of the number of ions, by specifying the total ion density
𝑛𝐼 . Due to this conservation, the sum of all, atomic- or charge-, state densities is always equal
to the total ion density[1], with only one scaling factor 𝜆 satisfying this condition, proof by
contradiction. ∑︁

𝑖

𝑛𝑖 =: 𝑛𝐼 (3.14)

Instead of directly specifying the total ion density, it is also possible to use the electron density
𝑛e and the charge neutrality of an equilibrium plasma and the charge of each atomic state to
substitute the ion density with the electron density[1].

𝑛𝑒
!
=
∑︁
𝑖

(𝑞𝑖 · 𝑛𝑖) (3.15)

𝑞𝑖 . . . charge of atomic state 𝑖

Using these equations, we can calculate the atomic population vector if,

∙ a plasma temperature 𝑇 is given
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∙ a set of bound atomic states 𝑖 ∈ {𝑏} is assumed, with for each atomic state known

– energy 𝐸𝑖

– statistical weights 𝑔𝑖

∙ and the electron density 𝑛𝑒 is known.

The general idea is to use the above equations to the get the relative abundance 𝑛𝑖

𝑛𝑗
of all

atomic states 𝑖 relative to some reference atomic states density 𝑛𝑗=r. We can use the above
relations to fill the atomic population vector relative to the density of the reference atomic
state, ⎛⎜⎜⎝

...
𝑛𝑖

𝑛r...

⎞⎟⎟⎠ (3.16)

and then scale the resulting vector vector such that it fulfills equation 3.15, to get the atomic
population vector 𝑛⃗.

𝑛⃗ = 𝜆 ·

⎛⎜⎜⎝
...
𝑛𝑖

𝑛r...

⎞⎟⎟⎠ (3.17)

This algorithm is described in more detail in the following section. This is done to provide
complete description of this algorithm ready for implementation and provide the necessary
fundamentals to discuss its characteristics.

3.3.1.2 Solving for the atomic population vector in TE conditions

To be able to follow the approach previously described we need the relative abundance of all
atomic states relative to some arbitrary chosen reference atomic state. These are unfortunately
not directly available.
The equations 3.11 and 3.13 allow us to calculate the abundance of a given, either charge- or
atomic-, state in relation to the abundance of one other reference state.
The equation 3.13 is more flexible, since it allows us to choose the reference state, but it has to
be noted that equation 3.13 is only valid for comparison between atomic states with identical
charge state, due to ionization also changing the electron partition function, and thus limiting
the possible reference states.
Equation 3.11 in contrast, always uses the next lower charge state for reference.
As such we can not get the relative abundance between every pair of atomic states directly.
Instead, we must first calculate the relative abundance of all charge states 𝑁𝑖

𝑁𝑗
and then use the

charge state’s internal relative abundance of its atomic states from equation 3.13, to calculate
the global relative abundance of each atomic state.
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To do so we choose without loss of generality a reference charge state 𝑁r. We can calculate the
relative abundance of the next higher and/or lower charge state using equation 3.11 directly,

3.11⇒ 𝑁r+1

𝑁r

(3.18)

3.11⇒ 𝑁r

𝑁r−1

=
1

𝑁r−1

𝑁r

⇒ 𝑁r−1

𝑁r

(3.19)

Using these values as a known previous value in addition to equation 3.11 we can calculate
the abundance of the next higher and lower charge state relative to the reference state .

𝑁r+2

𝑁r

=
𝑁r+2

𝑁r+1

· 𝑁r+1

𝑁r

(3.20)

𝑁r−2

𝑁r

=
𝑁r−2

𝑁r−1

· 𝑁r−1

𝑁r

=
1
𝑁𝑖

𝑁𝑖−1

· 𝑁𝑖

𝑁𝑅

(3.21)

This can be generalized to all other charge states, allowing us to calculate the abundance
of every charge state relative to the reference state, 𝑁𝑖+1

𝑁r
, using the known previous states

abundance relative to the reference state, 𝑁𝑖

𝑁r
.

𝑁𝑖+1

𝑁r

=
𝑁𝑖+1

𝑁𝑖

· 𝑁𝑖

𝑁r

(3.22)

𝑁𝑖−1

𝑁r

=
𝑁𝑖−1

𝑁𝑖

· 𝑁𝑖

𝑁r

=
1
𝑁𝑖

𝑁𝑖−1

· 𝑁𝑖

𝑁𝑅

(3.23)

Resulting in all charge states’ abundances relative to the reference state being known.⎛⎜⎜⎜⎜⎜⎜⎜⎝

...
𝑁r+1

𝑁r

𝑁r

𝑁r
𝑁r−1

𝑁r...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

...
𝑁r+1

𝑁r

1
𝑁r−1

𝑁r...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=:

1

𝑁r

· 𝑁⃗ (3.24)

𝑁⃗ . . . charge state population vector
𝑁𝑖 . . . density of charge state 𝑖

𝑁r . . . density of reference charge state
Which we then rescale to match a given electron density according to 3.15.

∑︁
𝑖

(︂
𝑞𝑖 ·

𝑁𝑖

𝑁r

)︂
=

1

𝑁r

·

(︃∑︁
𝑖

(𝑞𝑖 ·𝑁𝑖)

)︃
3.15
=

1

𝑁r

· 𝑛𝑒 (3.25)

⇒ 𝑁r =
𝑛𝑒∑︀

𝑖

(︁
𝑞𝑖 · 𝑁𝑖

𝑁r

)︁ (3.26)
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Giving us the charge state population vector 𝑁⃗ using equations 3.26 and 3.24.

𝑁⃗ =
𝑁r

𝑁r

· 𝑁⃗ = 𝑁r ·
(︂

1

𝑁r

· 𝑁⃗
)︂

(3.27)

𝑁⃗ =
𝑛𝑒∑︀

𝑖

(︁
𝑞𝑖 · 𝑁𝑖

𝑁r

)︁ ·
⎛⎜⎜⎜⎜⎜⎜⎜⎝

...
𝑁r+1

𝑁r

1
𝑁r−1

𝑁r...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.28)

To get the atomic population vector we basically repeat this procedure for all atomic states of
a each charge state.

1. choose an arbitrary reference atomic state r out of all atomic states of the current charge
state 𝑗, r ∈ {𝑏}𝑗.

2. use equation 3.13 to calculate the relative abundance of all other atomic states of this
charge state, 𝑖 ∈ {𝑏}𝑗, relative to the reference atomic state.

3.13⇒ 𝑛𝑖

𝑛r

(3.29)

3. compile them into a sub vector, chosen sub set of components arranged into a vector, of
the actual atomic population vector⎛⎜⎜⎝

...
𝑛𝑖

𝑛r...

⎞⎟⎟⎠ =
1

𝑛r

· 𝑛⃗𝑗 (3.30)

𝑛⃗𝑗 . . . charge state 𝑗 sub vector of the atomic population vector,
vector containing the densities of all atomic states with the charge state 𝑗

4. scale them such that the following equation is fulfilled.∑︁
𝑖∈{𝑏}𝑗

𝑛𝑖 := 𝑁𝑗 (3.31)

∑︁
𝑖∈{𝑏}𝑗

𝑛𝑖

𝑛r

=
1

𝑛r

·

⎛⎝∑︁
𝑖∈{𝑏}𝑗

𝑛𝑖

⎞⎠ =
1

𝑛r

·𝑁𝑗 (3.32)

⇒ 𝑛r =
𝑁𝑗∑︀

𝑖∈{𝑏}𝑗
𝑛𝑖

𝑛r

(3.33)
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Once all atomic population sub vectors are known the atomic population vector can be assem-
bled from them relatively easily.
Solving for the atomic population vector this way allows analytically calculating the atomic
population vector and requires only one memory location for each charge state in addition to
the storage of the atomic population vector itself.

3.3.1.3 Parallelizing the Solver

So far we used a sequential algorithm to calculate the atomic population vector 𝑛⃗. For large
numbers of atomic states, ≥ 106, a sequential algorithm is no longer feasible as will be briefly
estimated below.

One sequential operation takes at least one cycle to execute, resulting in the lower limit of
approximately 0.25 ns per multiplication on modern CPUs with a 4 GHz clock frequency.

1 multplication
∧
= 1 cycle =

1

𝑓CPU

=
1

4GHz
=

1

4
· 10−9 s (3.34)

Calculating the relative abundance requires at least one operation per atomic state. A
CPU can execute at most one sequential operation per clock cycle, which for 4 million
atomic states would take at least 1 ms.

⇒ 4 · 106 · 1

4
· 10−9s = 10−3s (3.35)

A time step of a PIConGPU simulations usually takes about 1 ms for standard non
demanding simulations, which is comparable to our previous lower limit for 4 ·106 atomic
states.
In reality some calculations in complex instruction sets, CISC architectures, require more
than one cycle to complete and performance is also highly influenced by data locality and
utilization of fetch-decode-compute pipelines[7]. Even if perfect utilization is assumed
how many cycles are required for a given instruction is highly dependent on the archi-
tecture of a given CPU or GPU, with modern, ca. 2019, Intel CPUs typically requiring
1-2 cycles for multiplication operations with a latency of 3 cycles, and about 6 cycles
for a division operation with a latency of 23 cycles[7]. Power functions or exponential
functions require even more cycles, with the exact time required highly dependent on
library implementation. Since we need to complete at least one exponential function
calculation and one multiplication per atomic state, we can safely assume that sequen-
tially calculating the atomic population vector for more than approximately 106 different
states is going to at least double the total time required.

It is therefore necessary to parallelize the algorithm. The algorithm presented above, can be
divided into 4 different sub steps.
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1. calculation of charge state relative abundances

2. scaling to get charge state densities

3. calculating the relative abundances of all atomic states of all charge states

4. scaling to get the atomic state densities

The steps 1 and 3 can be fully parallelized, the steps 2 and 4 at least partially, as will be
discussed in the following.

∙ Step 1:

Step 1 can be parallelized on the level of charge states, since equation 3.11 is independent
for all charge states. For every charge state higher than the reference we can chain
equation 3.22, until only a multiplication of equation 3.11 terms remains, which can be
directly calculated.

𝑁𝑖

𝑁r

3.22
=

𝑁𝑖

𝑁𝑖−1

· 𝑁𝑖−1

𝑁r

3.22
=

𝑁𝑖

𝑁𝑖−1

· 𝑁𝑖−1

𝑁𝑖−2

· 𝑁𝑖−2

𝑁r

=
𝑁𝑖

𝑁𝑖−1

· 𝑁𝑖−1

𝑁𝑖−2

· . . . · 𝑁r

𝑁r

(3.36)

𝑁𝑖

𝑁r

=
𝑖∏︁

𝑗=r+1

𝑁𝑗

𝑁𝑗−1

(3.37)

This can be improved by re substituting the original equation 3.11

𝑁𝑖

𝑁𝑖−1

· 𝑁𝑖−1

𝑁𝑖−2

3.11
=

(︃
1

𝑛𝑒

· 2
(︂

2𝜋𝑚𝑒𝑘B𝑇

ℎ2

)︂ 3
2

· 𝑍𝑖(𝑇 )

�����𝑍𝑖−1(𝑇 )
· 𝑒−Δ𝐸𝑖/(𝑘B𝑇 )

)︃

·

(︃
1

𝑛𝑒

· 2
(︂

2𝜋𝑚𝑒𝑘B𝑇

ℎ2

)︂ 3
2

·�
����𝑍𝑖−1(𝑇 )

𝑍𝑖−2(𝑇 )
· 𝑒−Δ𝐸𝑖−1/(𝑘B𝑇 )

)︃
(3.38)

=

(︃
1

𝑛𝑒

· 2
(︂

2𝜋𝑚𝑒𝑘B𝑇

ℎ2

)︂ 3
2

)︃2

· 𝑍𝑖+1(𝑇 )

𝑍𝑖−1(𝑇 )
· 𝑒−(Δ𝐸𝑖+Δ𝐸𝑖−1)/(𝑘B𝑇 ) (3.39)

⇒ 𝑁𝑖

𝑁r

3.37
=

(︃
1

𝑛𝑒

· 2
(︂

2𝜋𝑚𝑒𝑘B𝑇

ℎ2

)︂ 3
2

)︃𝑖−r

· 𝑍𝑖(𝑇 )

𝑍r(𝑇 )
· 𝑒−(

∑︀𝑖−1
𝑗=r Δ𝐸𝑗)/(𝑘B𝑇 ) (3.40)

Thereby avoiding the need to calculate intervening partition functions.

The parallelization should not stop at the charge state level however, since the number
of operations required for each charge state varies. For a naive parallelization this would
lead to some workers finishing before others and all but one workers waiting on worker
calculating the density of the charge state with the highest number of operations. The
worst charge state 𝑖 has to complete at best ⌈𝑍

2
⌉ steps to calculate 𝑁𝑖

𝑁r
, reference state
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lies in the middle of all other charge states, and at worst 𝑍 steps, reference state lies at
one end.

The number of steps being equal to how one has to either remove or add one
electron to reach a given charge state form the reference state.

Instead operations should be more evenly distributed, thereby reducing the compute
time for a given numbers of workers.

To do so, we keep the basic parallelization in charge states, but instead of letting one
worker perform all operations required for one charge state on its own, we utilize the
associativity of multiplications of floating point numbers to sub-divide the operations
into chunks with equal number of operations. All workers are assigned one subtask ini-
tially and are assigned the next subtask upon completion, until all subtask have been
completed, a concept known in PIConGPU as a for-each-functor[17]. Under ideal con-
ditions this approximately halfs the time required again, see below for a more detailed
explanation.

Assume the best case of a central reference state and without loss of generality
that 𝑍 is even. According to equation 3.40, the number of multiplications and
summations requiredfor a given charge state scales with the difference between
charge state and reference state. For the charge states furthest away from the
reference state 𝑍

2
multiplications are required, every step closer to the reference

states decreases the number of multiplications required by one until we reach the
reference state. After this the number of multiplications increases by one once
again until we reach once again the maximum value 𝑍

2
.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑍
2

𝑍
2
− 1
...
1

0

1
...

𝑍
2
− 1
𝑍
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. . . number of multiplications required (3.41)

The total number of multiplications required is therefore,

2 ·
𝑍
2∑︁

𝑖=1

𝑖
gaus

∑︀
= �2 ·

(𝑍
2

+ 1) · 𝑍
2

�2
(3.42)
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which can be distributed over the original 𝑍 workers, resulting in a maximum of
⌈𝑍
4

+ 1
2
⌉ operations per worker, or about half of the time required for the naive best

case parallelization with one worker for every charge state but the reference state.
For uneven Z the exact number changes but the general argument still holds true.

∙ Step 3:

This step is easily parallelized naively, since equation 3.13 allows the independent direct
calculation with constant number of operations.

∙ Step 1 and 2:

In both of these steps we essentially first sum over a vector, calculate the scaling factor
depending on this sum and then multiply all vector components with this number. The
calculation of the scaling factor can not be parallelized, but the summations and factor
applications can be parallelized by sub dividing the addition and multiplication in chunks
of equal size. Several workers can then work in parallel on these chunks in the same way
already described.

In addition to being able to parallelize the steps itself we can also change the order in which they
are performed and execute some of these steps in parallel. The steps 1 and 3 are independent
of all other, and as such can be executed in parallel. Only the step 2 and 4 depend on previous
results, with step 2 depending on the result of step 1, and step 4 depends on the results of
steps 1, 2 and 3.
As such the the execution of the steps 1 and 3 can be done in parallel, step 2 must wait on
the completion of step 1 but afterwards can be done in parallel with step 3, while step 4 must
be completed last and can not completed in parallel to any other step.
The parallelization does require additional memory to store intermediary results, but this
memory scales with the number of workers used, something we can choose freely. The number
of workers used may therefore be optimized with regards to memory and runtime available for
specific hardware and physical setup.

3.3.1.4 Local thermal equilibrium conditions, LTE

If a global thermal equilibrium can not be assumed, the next step of generalization is to assume
a local thermal equilibrium. The term local thermal equilibrium refers to a plasma in which
the atomic physics transitions are much faster than the changes in plasma conditions, resulting
in an atomic population vector which is, practically always, in a stable state for its current
plasma conditions and changes as these plasma conditions change with time[1]. The plasma
itself is not assumed to be in a global equilibrium, i.e. it has a time dependent evolution, but
the fact that local plasma conditions change sufficiently slowly can allow the definition of a
local electron temperature.
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Under these assumption, it is possible to use the solver we developed for TE-conditions for
every point of a grid, with the local plasma conditions used as input. This requires considerable
more computational power, since instead of solving for the atomic population vector once, we
now need to solve it for every time step, for every grid point. Due to the efforts invested into
parallelization previously this can still be computed with reasonable performance if a small
enough and comprehensive enough set of atomic states is available.
Unfortunately LTE conditions are of limited applicability in PIC-simulations, since PIC-
Simulations are usually used when LTE conditions are not present. Nevertheless they are
of use for validating more general solvers in more limited plasma conditions. The parallelized
LTE-solver may also be used as a cheap model for atomic physics if compute resources are not
available for more elaborate models.

3.3.1.5 Non-Local Thermal Equilibrium, NLTE

The next step up in complexity from local thermal equilibrium is the inclusion of non-local
effects. The term NLTE, describes a plasma in which still the atomic physics process are much
faster than the plasma evolution, in which long ranged interactions are present and the plasma
is not in equilibrium over the interaction range.
Previously we assumed interactions with atomic states to be limited to interacting with one
thermal bath for each point in space. This approximation breaks down if long ranged atomic
physics interactions are present and neighboring grid points are not in equilibrium.

Typical long ranged interactions being, propagating radiation or fast electron spectrum
components.

Since plasma conditions may vary widely over space time region and long ranged interactions
couple the atomic population vector to a region, the definition a single temperature becomes
impossible[1]. This also prevents the use of the equations 3.11 and 3.13, since the existence of
a single temperature was one of the primary assumptions used in their derivation.

Instead of using a temperature, long ranged interactions can be modeled as a local interaction
field 𝐼 (𝑟⃗), with the interaction field being generated by the entire interaction region and
provided as input data[3], for details of this interaction field see section 3.2. This allows us
to model interactions consistently, even if large variation of plasma conditions are present in
the interaction region. It also allows us to shift retardation effects to the interaction field
dynamics, where they are easier to model, see chapter 4 for details.
The local interaction field is assumed to be in equilibrium with the local atomic population
vector, still based on the assumption that the plasma evolution is much slower than the atomic
state dynamics, and we therefore solve for every grid point and time step, for a stable state of
the atomic rate equation.
In equilibrium conditions the macroscopic atomic population vector is by definition constant
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with time. This reduces the rate equation from a differential equation to a matrix equation[1],
the stable state atomic rate equation, simplifying the solution considerably.

𝑑

𝑑𝑡
𝑛⃗ = 0 = 𝑅 · 𝑛⃗ ; with 𝑅 = 𝑅

(︁
𝐼
)︁

(3.43)

The resulting system of linear equations is undetermined, since, as detailed in section 3.1, the
main diagonal is not linear independent of the off-diagonal elements[1]. A unique solution
therefore requires an additional boundary condition, typically the charge neutrality condition
3.15[1].
The stable state atomic rate equation can be solved using standard matrix solvers for a given
interaction field and electron density at a given point[1], but special care must be taken if
large, > 105, sets of atomic states are used. For large sets of atomic states both memory and
compute time required can be problematic, with the memory required for a naive storage of the
rate matrix growing as 𝒪(𝑛2) with the number of atomic states 𝑛, and the computation time
required, typically scaling between 𝒪(𝑛2) and 𝒪(𝑛3)[1]. Highly parallelized and optimized
solvers utilizing the typical sparseness of the rate matrix to decrease both the memory and
time required, are available, but tend to require specific matrix structures to assure stability[1].
Detailed discussions of the different solvers are available in the existing literature[1] and will
therefore not be repeated here.

3.3.1.5.1 NLTE Solvers and PIC-simulations NLTE solvers are widely used due to their
flexibility, with several existing implementations, for example flyCHK, scFly and the Los
Alamos suite of atomic physics codes[1]. In contrast to LTE solvers, they can in principle be
used to model atomic physics in PIC-simulations, due to their ability to model atomic physics
with non thermal spectra and high gradients in plasma conditions. In addition, the matrix
operations used by NLTE solvers are highly parallelizeable[1] and widely hardware accelerated,
making their use computationally tractable. NLTE solvers are also by design highly modular,
allowing developers to tune implementations for the desired accuracy or speed.
Unfortunately the fundamental assumption of equilibrium prevents their use in plasmas with
the very fast dynamics commonly encountered in laser generated plasmas. This also limits
their usefulness in PIC-simulations, which are often used to simulate laser generated plasmas.
A secondary limitation NLTE solver suffer from, is the necessity to provide accurate interaction
fields as input data. These must be supplied by the user for every point and time of the plasma
for which to solve the atomic rate equation. The input data NLTE solver require is usually
only available as the output of another simulation for everything but boundary regions.
It has to be noted that, while NLTE solver will calculate the correct atomic population vector
for the given electron and radiation spectrum, in reality the radiation and electron spectrum
is also dependent on the atomic population vector itself. The propagation of radiation and
the interaction of electrons with ions are both dependent on the atomic state of ions. The
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plasma simulation therefore needs the current atomic state to correctly predict the electron
and radiation spectra for every point in space, meaning that the atomic physics solver must
be closely integrated with the plasma simulation.
Integrating atomic physics solvers is also necessary due to hardware limitations, if non thermal
spectra are to be used. If thermal spectra can be assumed, input data are comperatively small,
specifying only the electron and radiation temperature field in addition to the local electron
density.
In the case of non-thermal spectra, the locally resolved electron and radiation spectra must be
provided directly as input data. This requires much more memory, since instead of 2 values,
electron and ion temperature, in addition to the local electron density, per point and time, we
now have to store an entire distribution of unknown shape. This may requires 100s of different
values per point and time, massively increasing the memory required to store the input data
set.

Storing a single input data set for one time step, assuming:

∙ a 3 dimensional cube

∙ subdivided into 1003 cells

∙ with a histograms with 128 bins for every cell for both the radiation- and electron
spectrum

∙ using 32 bit floats for data storage

already requires about 1GB of memory.

1003 · 128 · 4 · 2

Num. cells Num. Bins 4 Bytes radiation and
per histogram per 32bit float electron spectrum

= 1, 024 · 109 Byte

Higher resolutions increase this quickly, with typical PIC-simulations using far greater
number of cells.

This creates several problems for the use of NLTE solver in the post processing of plasma
simulations.
If a NLTE solver is used in post processing only, the entire input data set must be written to
memory by the plasma simulation used. While the total memory required to do so is commonly
available in HPC clusters, transfer speeds become problematic.

Modern DDR4-3200 RAM has a maximum speed of about 25,6 GB
s

[18] per memory
channel. With modern compute nodes having at best 8 channels, AMD EPYC[19], it
would require about 5 ms to write 1 GB of data to RAM compared to about 1 ms of
calculation time per PIConGPU time step. Therefore writing the small example input
data set to memory requires about 5 times more time than the calculation itself.
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The maximum amount of memory available is also limited, with modern compute nodes
by design having at maximum 1-2 TB of RAM, GPU nodes are typically equipped with
significant less memory than this maximum. Additionally not the complete RAM may
be used since the plasma simulation itself also requires both bandwidth and memory.
We can therefore at best hope to store a quite limited number of input data time steps.
More memory is available in the file system, but access is typically several magnitudes
slower, exacerbating the write problems described above.

Thus post processing use of NLTE solver is not practical, instead an NLTE solver must be run
in parallel to plasma simulations alllowing us to store only the current input data set of every
time step in memory.

3.3.1.6 Time dependent, TD

To be able to correctly model atomic physics in laser generated plasma, NLTE solver are not
sufficient. We can reuse the basic framework used by NLTE solvers, but instead of assuming
an equilibrium we solve the atomic rate equation time dependently in every grid point.

𝑑

𝑑𝑡
𝑛⃗(𝑟⃗, 𝑡) = 𝑅(𝑟⃗, 𝑡) · 𝑛⃗(𝑟⃗, 𝑡) (3.5)

This requires a different boundary condition, instead of being able to use the electron density,
we must specify the initial atomic population vector for every grid point.
The central idea of most time dependent solvers is stepwise approximate integration, with the
rate matrix 𝑅 assumed to be constant over the length of one step ∆𝑡. The integration itself
can be done analytically, since the atomic rate equation with a constant rate matrix can be
solved analytically, the fundamental solution taking the form

𝑛⃗(𝑡) =
∑︁
𝑖

(︁
𝑎𝑖 · 𝜆⃗𝑖 · 𝑒𝜆𝑖·𝑡

)︁
(3.44)

𝜆𝑖 . . . i-th eigenvalue of the matrix 𝑅

𝜆⃗𝑖 . . . i-th eigenvector of the matrix 𝑅

𝑎𝑖 . . . i-th fitting constant, determined by starting value 𝑛⃗0

Proof by insertion into the rate equation.
This is still an approximate solution, since the rate matrix is not independent of the atomic
population vector.
Unfortunately determining the eigenvalues and eigenvectors of a matrix is both computation-
ally and memory wise expensive for large matrices. Instead explicit or implicit solvers of
varying order can be used[1] to reduce the computational demand considerably. These are
described extensively in literature, for example in [16] and will therefore not be repeated here.
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TD solver are in principle well suited for modeling atomic physics in PIC-simulations. They
share NLTE solver’s ability to model atomic physics under varied plasma conditions and are
additionally able to model the transient effects of laser generated plasmas.

TD unfortunately also share the difficulties of NLTE solvers with regard to input data detailed
in the previous section, since both share the same interface with plasma simulations.

3.3.2 TD solver for direct inclusion in PIC-Simulations

All solvers in the previous chapter operated on the atomic population vector 𝑛⃗ as their the
basic quantity. This is natural if the solver developed separated from a plasma simulation,
but as detailed in the previous section this is neither desirable, due to the interction between
atomic states and PIC-simulation nor practical, due to memory write speed limits and total
memory limits.

Since atomic rate solvers have to be tightly integrated into the PIC-simulation anyway, the
use of the atomic population vector is no longer natural. As described in chapter 2.3 atomic
states should not be represented as a atomic population vector, but a rather as atomic states
sampled by macro-ions. The atomic population vector is therefore in PIC-simulations not
an elementary quantity but rather a derived quantity, created by binning all macro particles
weights according to their atomic state. We therefore need a new type of TD solver that may
be applied directly to a single macro-ion.

These new solvers are still based on the same fundamental description of standard TD solvers,
since macro-ions in a super cell only sample the corresponding atomic population vector.

But instead of being applied to the entire atomic population vector of a super cell, we use the
distributivity of the matrix multiplication, assuming the rate matrix to be practically constant
over a single super cell, to sub-divide the atomic population vector into several summands,
with each summand representing one macro-ion sample of the super cell 𝑛⃗𝑖.

𝑑

𝑑𝑡
𝑛⃗ = 𝑅 · 𝑛⃗ = 𝑅 ·

∑︁
𝑘

𝑛⃗𝑘 =
∑︁
𝑘

(𝑅 · 𝑛⃗𝑘) (3.45)

𝑛⃗𝑘 . . . k-th sample of the atomic population vector 𝑛⃗

This allows us to also sub-divide the change of the atomic population vector.

𝑑

𝑑𝑡
𝑛⃗𝑘 := 𝑅 · 𝑛⃗𝑘 (3.46)

Since each macro-ion only stores a single atomic state, this is equivalent to the a single column
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of the rate matrix.

𝑑

𝑑𝑡
𝑛⃗𝑘 = 𝑅 · 𝑛⃗𝑘 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑅11 𝑅12 . . . 𝑅1𝑖 . . .

𝑅21 𝑅22 . . . 𝑅2𝑖 . . .
...

...
...

...
...

𝑅𝑖1 𝑅𝑖2 . . . 𝑅𝑖𝑖 . . .

𝑅(𝑖+1)1 𝑅(𝑖+1)2 . . . 𝑅(𝑖+1)𝑖 . . .
...

...
...

...
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...
𝑛𝑖

0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑅1𝑖 · 𝑛𝑖

𝑅2𝑖 · 𝑛𝑖

...
𝑅𝑖𝑖 · 𝑛𝑖

𝑅(𝑖+1)𝑖 · 𝑛𝑖

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.47)

Which can be rewritten using 𝑅𝑗𝑗 = −
∑︀

𝑖∈𝑛/{𝑗}𝑅𝑖𝑗.

𝑑

𝑑𝑡
𝑛⃗𝑘 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑅1𝑖

𝑅2𝑖

...
𝑅(𝑖−1)𝑖

−
∑︀

𝑗∈{𝑛}/{𝑖}𝑅𝑗𝑖

𝑅(𝑖+1)𝑖

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
· 𝑛𝑖 (3.48)

This single vector essentially describes how a macro-ion sample of the atomic population vector
would change with time.

While directly equivalent to the original rate equation(3.5), this can not be applied to the a
single macro-ion, since one atomic state is converted to many states and the macro-ion itself
can only ever have a single atomic state at all times.

This problem can be solved by randomly choosing one new state for each macro particle such
that on average the rate equation is reproduced, a so called Monte Carlo algorithm. We will
discuss two different algorithms based on this idea in the following two sections, first the
Monte-Carlo TD solver for which we will derive the basic description we are going to use, and
secondly the further optimized Markov-chain TD solver.

3.3.2.1 Monte-Carlo TD solver

To construct a Monte-Carlo solver three things must be defined, what will be randomly
changed, how do we change them and lastly with which probability will we change to a specific
value.

The first question has already been answered in the previous section, we want to select a new
random atomic state form the set of all atomic states, only the last two remain to be answered.
We will start by deriving the probability for changing to a given new state, while the second
part of this section we will describe a pseudo code implementation of the basic solver to answer
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how we will change the atomic state. Lastly we will discuss the presented algorithm in the
context of including it in PIC-Simulations.

3.3.2.1.1 Monte-Carlo probability We want to model the change of one sample 𝑛⃗𝑗of the
atomic population vector over a given time step ∆𝑡. Using equation 3.48 this can approximated
in first order explicit euler method(1768) as,

𝑛⃗𝑗(𝑡0 + ∆𝑡) =
𝑑

𝑑𝑡
𝑛⃗𝑗(𝑡0) ·∆𝑡 + 𝑛⃗𝑗(𝑡0) (3.49)

Using equations 3.48 this can be rewritten.

𝑛⃗(𝑡0 +∆𝑡)𝑗 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑅1𝑖

...
𝑅(𝑖−1)𝑖

−
∑︀

𝑗∈{𝑛}/{𝑖}𝑅𝑗𝑖

𝑅(𝑖+1)𝑖

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·𝑛𝑖 ·∆𝑡+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

𝑛𝑖

0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑅1𝑖 ·∆𝑡
...

𝑅(𝑖−1)𝑖 ·∆𝑡

1−
(︁∑︀

𝑗∈{𝑛}/{𝑖}𝑅𝑗𝑖 ·∆𝑡
)︁

𝑅(𝑖+1)𝑖 ·∆𝑡
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·𝑛𝑖 (3.50)

Based on this expected value we may now try to find probabilities 𝑃𝑖→𝑘 that reproduce this
vector on average.
If we randomly choose for each macro-ion one specific state to change to with probability 𝑃𝑖→𝑘

the average atomic vector becomes,

𝑛⃗𝑗(𝑡0 + ∆𝑡) =
∑︁
𝑖

𝑃𝑖→𝑘 · 𝑒⃗𝑘 · 𝑛𝑖 =

⎛⎜⎜⎝
...

𝑃𝑖→𝑘

...

⎞⎟⎟⎠ · 𝑛𝑖 (3.51)

A quick comparison of equations 3.50 and 3.51 gives us the required probabilities,

𝑃𝑖→𝑘 =

⎧⎨⎩𝑅𝑘𝑖 ·∆𝑡 𝑖 ̸= 𝑘

1−
(︁∑︀

𝑗∈{𝑛}/{𝑖}𝑅𝑗𝑖 ·∆𝑡
)︁

𝑖 = 𝑘
(3.52)

To ensure that all 𝑃𝑖→𝑘 do in fact fulfill all the axiomatic properties of probabilities we must
limit the time step lengths ∆𝑡, as will be shown below.

∙ The sum over all 𝑃𝑖→𝑘 is always equal to one.

This is always fulfilled.

∑︁
𝑘

𝑃𝑖→𝑘 =

�
���

���
���

⎛⎝ ∑︁
𝑘∈{𝑛}/𝑖

𝑅𝑘𝑖 ·∆𝑡

⎞⎠+ 1−

��
���

���
���⎛⎝ ∑︁

𝑗∈{𝑛}/{𝑖}

𝑅𝑗𝑖 ·∆𝑡

⎞⎠ = 1 (3.53)



46 3.3 Solving the atomic rate equation

∙ Every 𝑃𝑖→𝑘 is smaller than one:

This can be fulfilled if the time step is chosen such that,

∀𝑘 : 𝑅𝑘𝑖 ·∆𝑡 ≤ 1 (3.54)

this is also required for numeric stability in explicit Euler schemes.

For the 𝑖 ̸= 𝑘 case our the limit to ∆𝑡 directly follows from equation 3.52. For 𝑖 = 𝑘

this follows from the definition of 𝑅 and ∆𝑡, since 𝑅𝑖𝑗 ≥ 0 if 𝑖 ̸= 𝑗 and ∆𝑡 ≥ 0.

𝑃𝑖→𝑘 = 𝑅𝑘𝑖 ·∆𝑡 ≤ 1 (3.55)

𝑃𝑖→𝑖 = 1−
∑︁

(≥ 0) ≤ 1 (3.56)

∙ All probabilities are greater or equal to zero:

While all 𝑃𝑖→𝑘 for all 𝑘 ̸= 𝑖 are always positive, since both 𝑅𝑘𝑖 and ∆𝑡 ≥ 0, 𝑃𝑖→𝑖 can be
smaller than 0, if the sum of all other 𝑃𝑖→𝑘 is greater than one.

This specific case occurs if ions with the atomic state 𝑖 are expected to on average
change from the state 𝑖 to another state more than once over the time step ∆𝑡, resulting
in negative densities due to our linear approximation. This can be avoided if the step
length ∆𝑡 is reduced further.

𝑃𝑖→𝑖 = 1−
∑︁

𝑘∈{𝑛}/𝑖

𝑃𝑖→𝑘 = 1−
∑︁

𝑘∈{𝑛}/𝑖

𝑅𝑘𝑖 ·∆𝑡 ≥ 0 (3.57)

⇒
∑︁

𝑘∈{𝑛}/𝑖

𝑅𝑘𝑖 ·∆𝑡 ≤ 1 (3.58)

This condition is also mandated by numerical stability in addition to the need to avoid
negative probabilities, see 3.3.2.1.3 for more information. The previous limit of ∆𝑡 is
also implied by this condition, since if any single summand is large than 1, a sum of
positive summands will always be larger than 1.

3.3.2.1.2 Implementation The basic idea of the Monte Carlo TD solver is to randomly
choose a new atomic state for each macro-ion in every time step, such that on average the rate
equation is recreated.
Since we want to integrate this solver into a PIC-Simulation the length of this time step ∆𝑡

is set by the PIC-Simulation and can not be changed on the fly. As described above, the
Monte-Carlo solver maximum step length is limited by the rate Matrix, which is variable since
it depends on the plasma conditions. It can therefore not be assured that the PIC time step
∆𝑡PIC is always equal or less to the maximum time step of the Monte-Carlo TD solver ∆𝑡maxMC.
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This can be avoided by sub stepping the PIC time step if rates rise too much. If the PIC time
∆𝑡PIC step is shorter than the maximum time step of the Monte-Carlo TD solver ∆𝑡maxMC no
problem arises, since a shorter time step simply increases the probability of remaining in the
current atomic state, ∆𝑡PIC may simply be used as ∆𝑡.
If the PIC time step is longer, ∆𝑡PIC is broken up in 𝑘 sub steps ∆𝑡𝑘, with 𝑘 a non zero natural
number, such that ∆𝑡𝑘 ≤ ∆𝑡maxMC

∆𝑡𝑘 =
∆𝑡PIC
𝑘

(3.59)

This allows us to both use a fixed time step ∆𝑡PIC and fulfill the condition 3.58 by reducing
the step length used by our solver as far as needed.
The Monte-Carlo TD solver therefore contains the following steps, executed for each macro-ion
in parallel.

1. (determine if sub stepping is necessary and if how often)

Check whether the condition 3.58 is fulfilled for ∆𝑡PIC. If yes 𝑘 = 1, if not find 𝑘 such
that ∆𝑡𝑘, fulfills the condition

2. (do sub steps)

Repeat 𝑘 times the following

a) (choose new state randomly)

Randomly choose with equal probability a new atomic state 𝑗 from the set contain-
ing all possible atomic states.

b) (check whether we change to new state)

Calculate probability 𝑃𝑖→𝑗 according to equation 3.52. Generate a random number
𝑥, 0 ≤ 𝑥 ≤ 1 with uniform probability. If 𝑥 ≤ 𝑃𝑖→𝑗 change the atomic state of the
macro-ion from 𝑖 to 𝑗 and exit, otherwise go to step 2a.

3.3.2.1.3 Inclusion in PIC-Simulation This solver has three major advantages compared
to standard TD solver,

∙ It is parallel in macro-ions.

Since there are many macro-ions in PIC-Simulation, this allows this solver to scale very
well with GPUs. The large number of independent task allow a near ideal utilization of
the massively parallel architecture of GPUs, consisting of thousands of execution units.
In addition, the standard parallelization structures developed for PIC-algorithms can be
reused, greatly simplifying the implementation and optimization.

∙ It does not require the entire rate matrix at once.
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This reduces the memory consumption significantly, allowing us to fit the required data
into the smaller lower level memory, with lower access latencies and higher write and
read speeds. This significantly increases the speed of the computation since less time is
spent waiting for memory reads and writes.

∙ It allows different step lengths for different atomic states.

Standard TD solver must use a single step length ∆𝑡 for all atomic states, requiring
them to use the smallest necessary for all atomic states, this means more steps and
consequently more operations than strictly necessary. The Monte-Carlo TD solver must
only use the smallest ∆𝑡 necessary in a single column of the rate matrix, and will therefore
need less steps, with consequently less operations and less compute time required.

It is therefore better suited for integration into PIC-Simulations, but may still be improved,
as explained below.
As derived in the previously, every transitions 𝑖 → 𝑗 has its own maximum time step length
∆𝑡𝑖→𝑗

∆𝑡𝑖→𝑗 =
1

𝑅𝑗𝑖

(3.60)

Since the Monte-Carlo TD solver use the same time step ∆𝑡 for all transitions from the initial
state 𝑖 transitions, the time step length ∆𝑡 is therefore limited by the lowest maximum time
step ∆𝑡𝑖→ 𝑗 of all transitions, i.e. limited by the highest rate of change of a single component
of the atomic population vector.

The highest rate of change is always experienced by the initial atomic state 𝑖, atomic
population vector component 𝑛𝑖, since the rate of change this component experiences is
equal to the sum of the rate of change of all others. The maximum step length of the
Monte-Carlo solver is therefore limited by this rate, condition 3.58, and to be able to
compute how many sub steps must be made this value must be available in memory or
calculated each time.

This is improved if every transition is considered independently, allowing us to increase the
effective step length and avoid sub stepping. The Markov-chain solver implements just that.

3.3.2.2 Markov-chain TD solver

The Markov-chain TD solver is based on modeling the time development as a stochastic
process1 with intermediary states.
Basis of this stochastic process is a set of atomic states with known probabilities 𝑃𝑘→𝑚 to
change from state 𝑘 to state 𝑚. The time development of a macro-ions atomic state is modeled
as a chain of transitions over time, starting with the initial state 𝑖 and ending with the final state

1a variation of a Markov chain to be more precise
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Figure 3.1: Flowchart of the Markov Chain solver algorithm

𝑓 after a fixed time ∆𝑡PIC has passed2. Each transition (𝑘 → 𝑚) reduces the remaining time by
1

𝑅𝑚𝑘
, the average time associated with the transition. If more than one transition is possible,

the transition is chosen randomly with equal probability for all possible transitions. If the
remaining time ∆𝑡𝑟 is not sufficient to complete a transition, the transition is only completed
with the probability 𝑃𝑘→𝑚(𝑡𝑟), calculated according to equation 3.52, and the remaining time 𝑡𝑟
is set to zero, otherwise the transition is rejected and a new transition chosen. If the remaining
time reaches zero the the current state is the final state of this macro ion.
This algorithm is applied in parallel to all macro-ions, on average reproduces the rate equation
and only requires a single rate in memory at one time.

2as the naming suggest, Δ𝑡PIC is assumed to be the time step length of the PIC-simulation, but this is not
necessary





4 Integrating atomic rate equation
solvers into PIC-simulations

In this chapter we will develop the components needed as an interface between the previously
derived TD-solvers and the existing PIC-simulation. Special care will taken to minimizes the
memory used, to allow storage of in shared memory and avoid the longer access latencies of
device memory wherever possible. Since shared memory of SMs of current GPUs is quite
small, 128 KB per SM on V100 GPUs[9], this is not trivial.

4.1 Adaptive Electron energy histogram

To be able to calculate the rate of a given transition due to interactions with electrons, the
local electron spectral density function is required. This function is approximated by binning
the all macro-electrons in a the current super cell, with the value of the bin being the sum of
all macro electrons weights with an energy in this bin.
The resulting histogram may span a wide energy range, with some electrons reaching more
than 100 MeV in laser plasma experiments. This is problematic, since the complete range of
electron energies starting with 0 must be covered be the electron energy histogram and bin
widths are limited by the need to accurately calculate the rate. If the cross section changes
fast and uniform large bin widths are used, the resulting approximate rate may be distorted
heavily. This leads to fixed bin width histograms containing many more bins than strictly
necessary, and consequently requiring much more memory, since the fixed bin width may not
be larger than the smallest acceptable bin width of the entire energy range.
To reduce the number of bins we can use variable bin widths, choosing the optimal bin width
for the current energy range. While in principle easy, the big question that remains to be
answered is, how to find such an acceptable bin size.
This question is not new, in fact there is a publication by Sanders and Fabian from 2018[2],
describing such an adaptive binning algorithm. Based on their core ideas I will develop an
adaptive histogram suitable for our purpose.
The main problem we face in designing an adaptive histogram is that most adaptive binning
algorithms depend on the content of the histogram itself. This means that all particles must
be binned twice, once to get the distribution and calculate the bin width for each bin and a
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second time to actually bin the particles in the new bins. This is not practical due to the effort
required to bin all macro-electrons and the fact that we want to bin them every time step.
The bin boundaries must be defined before the binning even begins.
This problem can be avoided if an relative error, as done in the publication by Aanders and
Fabian [2], is used. This allows us to make the bin width calculation independent of the actual
content of the histogram.
Bin widths are calculated using the following algorithm. Using a given relative error function,
an initial bin width ∆𝑥0 and an fixed boundary, we first calculate the initial relative error.
If the initial relative error is lower than the given target relative error, we double the initial
bin width until we first exceed the target relative error. The last bin width whose relative
error did not exceed the target is then used as bin width.
If the initial relative error is higher than the given target relative error, we half the initial bin
width until we first fall below the target relative error. This last bin width is then used as bin
width.

4.1.1 Relative error function

In our case the quantity we are interested is the atomic rate for a given energy bin 𝑅B,

𝑅B(𝐸𝐼 , 𝛿𝐸) =

∫︁ 𝐸𝑖+
Δ𝐸
2

𝐸𝑖−Δ𝐸
2

𝜎(𝐸) · 𝑣𝑒(𝐸) · 𝑓(𝐸)𝑑𝐸 (3.9 simplefied)

with the corresponding relative error Δ𝑅B

𝑓B
.

𝑅B . . . rate of energy bin B
𝑓B . . . electron density of the energy bin B

The error ∆𝑅B can be approximated using a taylor expansion of the function integrated over,

𝑅B(𝐸𝐼 , 𝛿𝐸) =

∫︁ 𝐸𝑖+
Δ𝐸
2

𝐸𝑖−Δ𝐸
2

∞∑︁
𝑛=0

(︃
1

𝑛!

𝛿𝑛

𝛿𝐸𝑛

[︁
𝑓(𝐸) · 𝜎(𝐸) · 𝑣𝑒(𝐸)

]︁⃒⃒⃒⃒
𝐸=𝐸𝑖

· (𝐸 − 𝐸𝑖)
𝑛

)︃
𝑑𝐸 (4.1)

changing the integration variable gives us,

𝑅B(𝐸𝐼 , 𝛿𝐸) =

∫︁ Δ𝐸
2

−Δ𝐸
2

∞∑︁
𝑛=0

(︃
1

𝑛!

𝛿𝑛

𝛿𝐸𝑛

[︁
· 𝑓(𝐸) · 𝜎(𝐸) · 𝑣𝑒(𝐸)

]︁⃒⃒⃒⃒
𝐸=𝐸𝑖

· (𝛿𝐸)𝑛

)︃
𝑑(𝛿𝐸) (4.2)

Using the generalized product rule for higher orders of derivatives twice results in,

𝑅B(𝐸𝐼 , 𝛿𝐸) =

∫︁ +Δ𝐸
2

−Δ𝐸
2

∞∑︁
𝑛=0

(𝛿𝐸)𝑛 ·
𝑛∑︁

𝑘=0

1

𝑘!
·𝑓 (𝑘)(𝐸𝑖)·

𝑛−𝑘∑︁
𝑙=0

1

𝑙! · (𝑛− 𝑘 − 𝑙)!
·𝜎(𝑙)(𝐸𝑖)·𝑣(𝑛−𝑘−𝑙)

𝑒 (𝐸𝑖)𝑑(𝛿𝐸)

(4.3)
everything but the 𝛿𝐸 term may be taken our from the integral since they are constants, and
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the remaining integral solved

𝑅B(𝐸𝐼 , 𝛿𝐸) =
∞∑︁
𝑛=0

·
𝑛∑︁

𝑘=0

1

𝑘!
·𝑓 (𝑘)(𝐸𝑖)·

𝑛−𝑘∑︁
𝑙=0

1

𝑙! · (𝑛− 𝑘 − 𝑙)!
·𝜎(𝑙)(𝐸𝑖)·𝑣(𝑛−𝑘−𝑙)

𝑒 (𝐸𝑖)·
[︂

1

𝑛 + 1
· (𝛿𝐸)𝑛−1

]︂+Δ𝐸
2

−Δ𝐸
2

(4.4)
with [︂

1

𝑛 + 1
· (𝛿𝐸)𝑛−1

]︂+Δ𝐸
2

−Δ𝐸
2

=

⎧⎨⎩ 1
𝑛+1
·
(︀
Δ𝐸
2

)︀𝑛 · 2 ;𝑛 + 1 uneven

0 ;𝑛 + 1 even
(4.5)

resulting in the final form,

𝑅B(𝐸𝐼 , 𝛿𝐸) =
∞∑︁
𝑎=0

2𝑎∑︁
𝑘=0

2𝑎−𝑘∑︁
𝑙=0

1

𝑘!𝑙!(2𝑎− 𝑙 − 𝑘)!
·𝑓 (𝑘)(𝐸𝑖)·𝜎(𝑙)(𝐸𝑖)·𝑣(𝑛−𝑘−𝑙)

𝑒 (𝐸𝑖)·
1

2𝑎 + 1

(︂
∆𝐸

2

)︂2𝑎+1

·2

(4.6)
From this we then must disregarding all terms used to calculate the actual rate from the his-
togram, shift all terms with 𝑘 > 0 into higher order terms, cut 𝑓(𝐸𝑖) giving us an approximate
of the relative error of 𝑝-th order.

∆𝑅B(𝐸𝐼 , 𝛿𝐸)

𝑓(𝐸𝑖) 𝑝

=

𝑝∑︁
𝑎=𝑚

2𝑎∑︁
𝑙=0

1

𝑘!𝑙!(2𝑎− 𝑙)!
· 𝜎(𝑙)(𝐸𝑖) · 𝑣(𝑛−𝑙)

𝑒 (𝐸𝑖) ·
1

2𝑎 + 1

(︂
∆𝐸

2

)︂2𝑎+1

· 2 +𝒪(𝑓 (1))

(4.7)
To be able to calculate this term we need the arbitary order derivatives of both 𝜎(𝐸) and
the electron velocity 𝑣𝑒(𝐸). In the case of classical velocities the latter can be determined
analytically.

𝑣𝑒(𝐸) =

√︂
2 · 𝐸
𝑚

(4.8)

⇒ 𝑣(𝑍)
𝑒 (𝐸) =

(︂
2 · 𝐸
𝑚

)︂𝑍

·
(︂

2

𝑚

)︂𝑍

·
𝑍−1∏︁
𝑙=0

(︂
1

2
− 𝑙

)︂
(4.9)

For the relativistic case an analytic term also does exist, but it can not be written in a closed
form for arbitary order.
No such expression exists for 𝜎(𝐸) in general, thus forcing us to rely on numerical derivatives.

4.1.2 Numerical derivative of arbitrary order using finite differences

In the following we will essential rederive a publication “Generation of finite Difference Formu-
las on Arbitrarily Space Grids” by Bengt Fornberg from 1988[5]. This is necessary since the
original publication is too short to contain the derivation of the algorithm presented and the
presented algorithm can not directly be implemented. I will indicate in the derivation where
the publication actually ended.
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This publication essentially describes a recursion algorithm for weights of finite difference
formulas. The basic idea used by Fornberg is to approximate the function 𝑓 using polynomials
of at least one degree higher than the order of derivative, and find the correct finite difference
coefficients from the derivative of the approximate polynomials.

For the approximation of the function we assume that the function value 𝑓(𝑥) is given at some
arbitrary set sample points {𝛼𝜈}, with 0 ≤ 𝜈 ≤ 𝑛.

We want our approximation polynomial 𝑝(𝑥) to have the form,

𝑝(𝑥) =
𝑛∑︁

𝜈=0

𝐹𝑛,𝜈(𝑥) · 𝑓(𝛼𝜈) (4.10)

To make sure that our approximation always intersects with the actual function at the sample
points,

𝑝(𝛼𝜈)
!
= 𝑓(𝛼𝜈) (4.11)

we need assure that,

𝐹𝑛,𝜈(𝛼𝑘) =

⎧⎨⎩1 ; 𝜈 = 𝑘

0 ; 𝜈 ̸= 𝑘
(4.12)

This may be achieved using the following construction. We begin by defining the function
𝑤𝑛(𝑥),

𝑤𝑛(𝑥) =
𝑛∏︁

𝑘=0

(𝑥− 𝛼𝑘) (4.13)

the derivative of this function is,

𝑤′
𝑛(𝑥) =

𝑛∑︁
𝑙=0

(︃
𝑙−1∏︁
𝑘=0

(𝑥− 𝛼𝑘) · 1 ·
𝑛∏︁

𝑘=𝑙+1

(𝑥− 𝛼𝑘)

)︃
(4.14)

With these we define 𝐹𝑛,𝜈 ,

𝐹𝑛,𝜈(𝑥) =
𝑤𝑛(𝑥)

𝑤′
𝑛(𝛼𝜈) · (𝑥− 𝛼𝜈)

(4.15)

which fullfills condition 4.12.

𝐹𝑛,𝜈(𝛼𝑘) =
𝑤𝑛(𝛼𝑘)

𝑤′
𝑛(𝛼𝜈) · (𝛼𝑘 − 𝛼𝜈)

; 𝜈 ̸= 𝑘 (4.16)

=
0

(̸= 0)
= 0 (4.17)

𝐹𝑛,𝜈(𝛼𝜈) =
𝑤𝑛(𝛼𝜈)

𝑤′
𝑛(𝛼𝜈) · (𝛼𝜈 − 𝛼𝜈)

; 𝜈 ̸= 𝑘 (4.18)

=
0

(̸= 0) · 0
→ 𝑤′

𝑛(𝛼𝜈)

𝑤′
𝑛(𝛼𝜈)

= 1 (4.19)
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With the thus defined approximation polynomial we want to find coefficients 𝛿𝑚𝑛,𝜈 such that,

𝑑𝑚

𝑑𝑥𝑚
𝑓(𝑥) ≈ 𝑑𝑚

𝑑𝑥𝑚
𝑝(𝑥) =

𝑛∑︁
𝜈=0

𝛿𝑚𝑛,𝜈 · 𝑓(𝛼𝜈) (4.20)

inserting the definition of 𝑝(𝑥),

𝑛∑︁
𝜈=0

𝑑𝑚

𝑑𝑥𝑚
𝐹𝑛,𝜈(𝑥) · 𝑓(𝛼𝜈) =

𝑛∑︁
𝜈=0

𝛿𝑚𝑛,𝜈 · 𝑓(𝛼𝜈) (4.21)

and comparing gives us,
𝑑𝑚

𝑑𝑥𝑚
𝐹𝑛,𝜈(𝑥) = 𝛿𝑚𝑛,𝜈 (4.22)

which we can integrate for 𝑥 = 0, without loss of generality, since replacing 𝑥 with (𝑥 − 𝑥0)

always allows us to reach this value.

𝐹𝑛,𝜈(𝑥) =
𝑛∑︁

𝑚=0

𝛿𝑚𝑛,𝜈
𝑥𝑚

𝑚!
(4.23)

In addition the definition of 𝐹𝑛,𝜈 gives us,

𝐹𝑛,𝜈 =

⎧⎨⎩𝐹𝑛−1,𝜈 · 𝑥−𝛼𝑛

𝛼𝜈−𝛼𝑛
; 𝜈 ≤ 𝑛− 1

𝐹𝑛−1,𝑛−1 · (𝑥−𝛼𝑛−1)·𝑤𝑛−2(𝛼𝑛−1)
𝑤𝑛−1(𝛼𝜈)

𝜈 = 𝑛
(4.24)

substituting equation 4.23 and comparing by power gives us the following 6 equations, two of
which are explicitly mentioned in the original publication.

𝛿𝑚𝑛,𝜈 = 𝛿𝑚−1
𝑛−1,𝜈 ·

𝑚

𝛼𝜈 − 𝛼𝑛

+ 𝛿𝑚𝑛−1,𝜈 ·
𝛼𝑛

𝛼𝑛 − 𝛼𝜈

; 1 ≤ 𝑚 ≤ 𝑛− 1 (4.25)

𝛿0𝑛,𝜈 = 𝛿0𝑛−1,𝜈 ·
𝛼𝑛

𝛼𝑛 − 𝛼𝜈

(4.26)

𝛿𝑛𝑛,𝜈 = 𝛿𝑚−1
𝑛−1,𝑛−1 ·

𝑛

𝛼𝜈 − 𝛼𝑛

(4.27)

𝛿0𝑛,𝑛 = 𝛿0𝑛−1,𝑛−1 · 𝛼𝑛−1 ·
𝑤𝑛−2(𝛼𝑛−1)

𝑤𝑛−1(𝛼𝑛)
(4.28)

𝛿𝑚𝑛,𝑛 =
𝑤𝑛−2(𝛼𝑛−1)

𝑤𝑛−1(𝛼𝑛)
·
[︀
𝑚 · 𝛿𝑚−1

𝑛−1,𝑛−1 − 𝛼𝑛−1 · 𝛿𝑚𝑛−1,𝑛−1

]︀
1 ≤ 𝑚 ≤ 𝑛− 1 (4.29)

𝛿𝑛𝑛,𝑛 = 𝛿𝑛−1
𝑛−1,𝑛−1 · 𝑛 (4.30)

These equation allow us to recursively calculate the finite difference coefficients, if correctly
chained. While the original publication gives a pseudo code implementation using these equa-
tions to calculate the coefficents, I was not able verify this implementation, since all further
steps were omitted. In addition the given implementation seems to assume having always
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access to all previous values, therefore requiring relatively large amounts of memory. We will
derive a variant of this algorithm that does not rely on this assumption and minimizes the
memory required.
To do this we first abstract form the actual formulas. In essence all 𝛿𝑚𝑛,𝜈 can be identified by
a the tripple (𝑚,𝑛, 𝜈) and the six equation above can be summarized as follows,

1. (𝑚,𝑛, 𝜈)← (𝑚,𝑛− 1, 𝜈) ∧ (𝑚− 1, 𝑛− 1, 𝜈)

2. (0, 𝑛, 𝜈)← (0, 𝑛− 1, 𝜈)

3. (𝑚,𝑚, 𝜈)← (𝑚− 1,𝑚− 1, 𝜈)

4. (0, 𝑛, 𝑛)← (0, 𝑛− 1, 𝑛− 1)

5. (𝑚,𝑛, 𝑛)← (𝑚,𝑛− 1, 𝑛− 1) ∧ (𝑚− 1, 𝑛− 1, 𝑛− 1)

6. (𝑚,𝑚,𝑚)← (𝑚− 1,𝑚− 1,𝑚− 1)

As the necessary start of the recursion we use 𝛿00,0 = (0, 0, 0) = 1

Based on combination of these equations we can directly derive a few simple cases,

∙ (𝑚,𝑚, 𝜈):

(0, 0, 0)
𝜈 x 6.−→ (𝜈, 𝜈, 𝜈)

(𝑚− 𝜈) x 3.
−→ (𝑚,𝑚, 𝜈)

∙ (𝑚,𝑚, 0):

(0, 0, 0)
𝑚 x 3.−→ (𝑚,𝑚, 0)

∙ (0, 𝑛, 𝜈):

(0, 0, 0)
𝜈 x 4.−→ (0, 𝜈, 𝜈)

(𝑛− 𝜈) x 2.
−→ (0, 𝑛, 𝜈)

All of these case have in common that only a single variable must be kept in memory, since no
branches are necessary. All other cases require the use equation 1. or 5., which both branch,
making their use much more complicated. It is worthwhile to thoroughly analyze the equations
1. and 5. before we continue further, starting with equation 5..
Equation 5. may only be applied to triple of the form (𝑚,𝑛, 𝑛), if 1 ≤ 𝑚 ≤ 𝑛− 1. Each such
triple branches in two other triples I: (𝑚,𝑛− 1, 𝑛− 1) and II: (𝑚− 1, 𝑛− 1, 𝑛− 1) both once
again of the original form.
Repeatedly applying equation to 5., leads in the branch I to an ever decreasing 𝑛 while keeping
𝑚 the same until 𝑚 is equal to 𝑛−1 and equation 5. may no longer be applied. At his point we
have reached the triple (𝑚,𝑚,𝑚) which can be directly derived from (0, 0, 0) using equation
6..
The branch II in contrast reduces, both 𝑚 and 𝑛 equally, keeping the number of steps in the
branch I until a triple of the from (n,n,n) constant, until 𝑚− 1 = 0 is reached, also forbidding
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the continued appllication of equation 5.. We will then have reached a triple of the form (0,n,n)
which also has been solved already and can be directly derived from (0,0,0) using equation 4..
It also has to be noted that if we start with a given triple (𝑚,𝑛, 𝑛) the following chain may
be built,

(𝑚,𝑛, 𝑛)
5.I→ (𝑚,𝑛− 1, 𝑛− 1)

5.II ↓ 5., II ↓
(𝑚− 1, 𝑛− 1, 𝑛− 1)

5.I→ (𝑚− 1, 𝑛− 2, 𝑛− 2)

interweaving the different branches created in each application of the equation 5.
Based on this knowledge we can invert this chain and construct a recursion starting from
(0, 0, 0) to all triples of the form (𝑚,𝑛, 𝑛).

(0, 0, 0)
4.→ (0, 1, 1)

4.→ . . . 4.→ (0, 𝑛−𝑚,𝑛−𝑚)

6. ↓ 5., II ↓ . . . 5., II ↓
(1, 1, 1)

5.I→ (1, 2, 2)
5.I→ . . . 5.I→ (1, 𝑛−𝑚 + 1, 𝑛−𝑚 + 1)

...
...

(1, 1, 1)
5.I→ (1, 2, 2)

5.I→ . . . 5.I→ (𝑚,𝑛, 𝑛)

This can be implemented as using a set of 𝑘 = 𝑚− 𝑛 different variables (𝑥0, 𝑥1, . . . , 𝑥𝑘) with
the following algorithm.

x[0] = 1 // Init with (0,0,0)

for( 1 <= i <= k ):{

x[i] = 4(x[i]) // Init with (0,i,i)

}

for( 1 <= j <= m ):{

x[0] = 6(x[0]) // (j-1, j-1, j-1) -> (j,j,j)

for( 1 <= i <= k ):{

x[i] = 5(I=x[i-1], II=x[i], i, j )

// I = (j,(i-1)+j,(i-1)+j), II = (j,i+(j-1),i+(j-1)) -> (j,i+j,i+j)

}

}

// => x[k] = (m,n,n)

Alternatively this network may also be traversed, with swapped axis, requiring 𝑚 variables
{𝑥𝑖} instead of 𝑛−𝑚, allowing us to choose whichever version requires less memory for a given
input triple (𝑚,𝑛, 𝑛)
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Similar consideration lead to the similar algorithms for all other case, but these tend to be
much more complicated, so instead of deriving them in detail, only the results are given here.

∙ (𝑚,𝑛, 𝑛𝑢),𝑚− 𝑛 > 𝜈

Using 𝑚 + 1 different 𝑥𝑖,

x[0] = 1 // Init with (0,0,0)

for( 1 <= i <= nu ):{

x[i] = 6(x[i-1]) // Init with (i,i,i), x[i-1] = (i-1,i-1,i-1)

}

for( 1 <= i <= m-nu ):{

x[nu+i] = 3(x[nu+i-1])

// Init with (nu+i, nu+i, nu), x[nu+i-1] = (nu+i-1, nu+i-1, nu)

}

for( 1 <= j <= nu ):{

x[0] = 4(x[0]) // (0,j-1, j-1) -> (0,j,j)

for( 1 <= i <= nu-1 ):{

if( i+j <= nu ):{

x[i] = 5( I=x[i], II=x[i-1], i, j )

// x[i] = (i,(j-1)+i,(j-1)+i)

// x[i-1] = (i-1,j+(i-1),j+(i-1))

// -> (i, i+j, i+j)

}

else:{

x[i] = 1(I = x[i], II = x[i-1], i, j)

// x[i] = (i,(j-1)+i,nu)

// x[i-1] = (i-1,j+(i-1),nu)

// -> (i, i+j, nu)

}

}

for( nu <= i <= m ):{

x[i] = 1(I=x[i], II=x[i-1], i, j )

// I = (j,(i-1)+j,nu), II = (i-1,j+(i-1),nu) -> (i,j+i,nu)

}

}

for( nu+1 <= j <= n-m ):{

x[0] = 2(x[0]) // (0,j-1, nu) -> (0,j,nu)
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for( 1 <= i <= m ):{

x[i] = 1(I=x[i], II=x[i-1], i, j )

// I = (i,i+(j-1),nu), II = (i-1,(i-1)+j,nu) -> (i,i+j,nu)

}

// => x[k] = (m,n,nu)

∙ (𝑚,𝑛, 𝑛𝑢),𝑚− 𝑛 ≤ 𝜈,𝑚 ≥ 𝜈

Using 𝑚 + 1 different 𝑥𝑖,

x[0] = 1 // Init with (0,0,0)

for( 1 <= i <= nu ):{

x[i] = 6(x[i-1]) // Init with (i,i,i), x[i-1] = (i-1,i-1,i-1)

}

for( nu+1 <= i <= m ):{

x[nu+i] = 3(x[i-1])

// Init with (i, i, nu), x[i-1] = (i-1, i-1, nu)

}

for( 1 <= j <= m-n ):{

x[0] = 4(x[0]) // (0,j-1, j-1) -> (0,j,j)

for( 1 <= i <= nu-m+n ):{

x[i] = 5(I=x[i], II=x[i-1], i, j )

// I = (i,i+(j-1),i+(j-1)), II = (i-1,(i-1)+j,(i-1)+j) -> (i,i+j,i+j)

}

for( nu-m+n+1 <= i <= nu ):{

if( i+j <= nu ):{

x[i] = 5( I=x[i], II=x[i-1], i, j )

// x[i] = (i,(j-1)+i,(j-1)+i)

// x[i-1] = (i-1,j+(i-1),j+(i-1))

// -> (i, i+j, i+j)

}

else:{

x[i] = 1(I = x[i], II = x[i-1], i, j)

// x[i] = (i,(j-1)+i,nu)

// x[i-1] = (i-1,j+(i-1),nu)

// -> (i, i+j, nu)

}

}
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for( nu+1 <= i <= m ):{

x[i] = 1(I=x[i], II=x[i-1], i, j )

// I = (i,i+(j-1),nu), II = (i-1,(i-1)+j,nu) -> (i,i+j,nu)

}

}

// => x[k] = (m,n,nu)

∙ (𝑚,𝑛, 𝑛𝑢), 𝑛 > 𝜈 > 𝑚, 𝑘 ≤ 𝑚

Using 𝑛−𝑚 + 1 different 𝑥𝑖,

x[0] = 1 // Init with (0,0,0)

for( 1 <= i <= n - m ):{

x[i] = 4(x[i-1]) // Init with (0,i,i), x[i-1] = (0,i-1,i-1)

}

for( 1 <= j <= m-n+nu ):{

x[0] = 6(x[0]) // (j-1,j-1, j-1) -> (j,j,j)

for( 1 <= i <= n-m ):{

x[i] = 5(I=x[i-1], II=x[i], i, j )

// I = (j,(i-1)+j,(i-1)+j), II = (j-1,i+(j-1),i+(j-1)) -> (j,i+j,i+j)

}

}

for( m-n+nu+1 <= i <= m ):{

x[0] = 6(x[0]) // (j-1,j-1, j-1) -> (j,j,j)

for( 1 <= i <= j+nu ):{

x[i] = 5( I=x[i-1], II=x[i], i, j )

// x[i] = (j-1,(j-1)+i,(j-1)+i)

// x[i-1] = (j,j+(i-1),j+(i-1))

// -> (i, i+j, i+j)

}

for( j+nu+1 <= i <= n-m ):{

x[i] = 1( I=x[i-1], II=x[i], i, j )

// x[i] = (j-1,(j-1)+i,nu)

// x[i-1] = (j,j+(i-1),nu)

// -> (i, i+j,nu)

}

}

// => x[k] = (m,n,nu)
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∙ (𝑚,𝑛, 𝑛𝑢), 𝑛 > 𝜈 > 𝑚, 𝑘 > 𝑚

Using 𝑛−𝑚 + 1 different 𝑥𝑖,

x[0] = 1 // Init with (0,0,0)

for( 1 <= i <= nu ):{

x[i] = 4(x[i-1]) // Init with (0,i,i), x[i-1] = (0,i-1,i-1)

}

for( nu + 1 <= i <= n - m):{

x[i] = 2(x[i-1]) // Init with (0,i,nu), x[i-1] = (0,i-1,nu)

}

for( 1 <= j <= m ):{

x[0] = 6(x[0]) // (j-1,j-1, j-1) -> (j,j,j)

for( 1 <= i <= nu -j ):{

x[i] = 5(I=x[i-1], II=x[i], i, j )

// I = (j,(i-1)+j,(i-1)+j), II = (j-1,i+(j-1),i+(j-1)) -> (j,i+j,i+j)

}

for( nu - j <= i <= n-m ):{

x[i] = 1( I=x[i-1], II=x[i], i, j )

// x[i] = (j-1,(j-1)+i,nu)

// x[i-1] = (j,j+(i-1),nu)

// -> (i, i+j, i+j)

}

}

// => x[k] = (m,n,nu)

4.1.3 Implementation Adaptive Histogram

The adaptive Histogram is implemented as a list of histogram bins, for each bin containing
the accumulated weight of all macro-particles in this bin, in addition to the central energy and
bin width of the bin, the storage of bin widths being necessary to allow gaps in the histogram
The list is implemented as a fixed length array to avoid the use of pointers and their accom-
panying memory usage.

4.2 Feedback to electrons

As electrons interaction with ions and case a atomic state transition the energy of the electron
may change.
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This feedback of atomic processes to the actual electron distribution must be modeled to ensure
energy conservation in the simulation. This is done by storing the sum of energy released to or
taken from the electron spectrum due due to each single atomic process in a second histogram
over the energy of the interaction partner. This is possible since we resolve interaction process
by energy bin, distinguishing between different energy bins of the same processes when a
random transition is chosen. After the actual atomic rate solver step is completed, this change
in energy is then applied equally to all electrons in the respective energy bin, thus modeling
feedback of atomic process to the electron spectrum.



5 Outlook

In this thesis a memory frugal, highly parallelized atomic physics model that is directly coupled
to a PIC-simulation has been derived. The model is computationally feasible and rests on a
solid theoretical derivation. Based on the theoretical derived model a functional implementa-
tion was created for the simulation code PCIonGPU. While a first step in the right direction,
further work must be invested in optimizing the computational performance, and validating
the derived model both against experimental data and other simulations. In addition several
possible future improvements have already been envisioned.
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A Proof of consistency of enumeration
and indexation

The number of super configurations #𝑁⃗ can be calculated using both the equation 2.17 as well
as equation 2.23.

Using the maximum index possible,

#𝑁⃗ = max{#}+ 1 (A.1)

which can in turn be calculated using equation 2.23, or directly using equation 2.17. Both are
consistent as will be shown now.

Proof. The maximum index corresponds to the occupation number vector with the maximum
occupation number for each level, since equation 2.23 is monotone increasing in all occupation
numbers.

# =
𝑛max∑︁
𝑖=1

𝑁𝑖 ·
𝑖−1∏︁
𝑗=1

(min(𝑔(𝑖), 𝑍) + 1) ; 𝑔(𝑖) = 2 · 𝑖2 > 0, 𝑍 > 0

(2.23, revisited)

⇒ max{#} = #(𝑁⃗ = (max(𝑁1),max(𝑁2), . . . )) ;𝑁𝑖 ≤ 𝑚𝑖𝑛(𝑔(𝑖), 𝑍)

(A.2)

⇒ 𝑁⃗max = (min(𝑔(1), 𝑍), min(𝑔(2), 𝑍), . . . ) (A.3)

⇒ max(#) =
𝑛max∑︁
𝑖=1

(︃
min(𝑔(𝑖), 𝑍) ·

𝑖−1∏︁
𝑗=1

(min(𝑔(𝑗), 𝑍) + 1)

)︃
(A.4)

⇒ #𝑁⃗ =

(︃
𝑛max∑︁
𝑖=1

(︃
min(𝑔(𝑖), 𝑍) ·

𝑖−1∏︁
𝑗=1

(min(𝑔(𝑗), 𝑍) + 1)

)︃)︃
+ 1 (A.5)

=

(︃
𝑛max∑︁
𝑖=0

(︃
𝑔*(𝑖) ·

𝑖−1∏︁
𝑗=0

(𝑔*(𝑖) + 1)

)︃)︃
+ 1 (A.6)
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While using equation 2.17 gives us,

#𝑁⃗ =
𝑛max∏︁
𝑛=1

(min(𝑔(𝑛), 𝑍) + 1) (2.17, revisited)

=
𝑛max∏︁
𝑖=1

(𝑔*(𝑖) + 1) ; 𝑔*(𝑖)
!
= min(𝑔(𝑖), 𝑍) (A.7)

To proof consistency we start with equation A.7 and separate the last multiplicative term of
our product,

#𝑁⃗ =

(︃
𝑛max−1∏︁

𝑖=1

(𝑔*(𝑖) + 1)

)︃
· (𝑔*(𝑛max) + 1) (A.8)

expanding the multiplication yields a term, similar in structure to equation 2.23 and the
original product once again, now with a reduced upper limit of the index range.

#𝑁⃗ = 𝑔*(𝑛max) ·

(︃
𝑛max−1∏︁

𝑖=1

(𝑔*(𝑖) + 1)

)︃
+ 1 ·

(︃
𝑛max−1∏︁

𝑖=1

(𝑔*(𝑖) + 1)

)︃
(A.9)

Rewriting to better conform to the structure of equation 2.23 by inserting a sum over one
component, yields the following.

#𝑁⃗ =
𝑛max∑︁

𝑖=𝑛max

(︃
𝑔*(𝑖) ·

𝑖−1∏︁
𝑗=1

(𝑔*(𝑗) + 1)

)︃
+

(︃
𝑛max−1∏︁

𝑖=1

(𝑔*(𝑖) + 1)

)︃
(A.10)

Of course we can continue expanding the remaining product one term at a time

#𝑁⃗ =
𝑛max∑︁

𝑖=𝑛max

(︃
𝑔*(𝑖) ·

𝑖−1∏︁
𝑗=1

(𝑔*(𝑗) + 1)

)︃
+

(︃
𝑛max−2∏︁

𝑖=1

(𝑔*(𝑖) + 1)

)︃
· (𝑔*(𝑛max − 1) + 1) (A.11)

which once again gives a term of the same structure as one summand of equation 2.23 in
addition to our product with the upper limit of its index range reduced further.

#𝑁⃗ =
𝑛max∑︁

𝑖=𝑛max

(︃
𝑔*(𝑖) ·

𝑖−1∏︁
𝑗=1

(𝑔*(𝑗) + 1)

)︃
+𝑔*(𝑛max−1)·

(︃
𝑛max−2∏︁

𝑖=1

(𝑔*(𝑖) + 1)

)︃
+

(︃
𝑛max−2∏︁

𝑖=1

(𝑔*(𝑖) + 1)

)︃
(A.12)

The second term we integrate into our sum, the third term remains.

#𝑁⃗ =
𝑛max∑︁

𝑖=𝑛max−1

(︃
𝑔*(𝑖) ·

𝑖−1∏︁
𝑗=1

(𝑔*(𝑗) + 1)

)︃
+

(︃
𝑛max−2∏︁

𝑖=1

(𝑔*(𝑖) + 1)

)︃
(A.13)
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Repeating this procedure, or complete induction if you prefer, gives the following.

⇒ #𝑁⃗ =
𝑛max∑︁
𝑖=2

(︃
𝑔*(𝑖) ·

(︃
𝑖−1∏︁
𝑗=1

(𝑔*(𝑗) + 1)

)︃)︃
+

(︃
1∏︁

𝑖=1

(𝑔*(𝑖) + 1)

)︃
(A.14)

Which we can simplefy,

#𝑁⃗ =
𝑛max∑︁
𝑖=2

(︃
𝑔*(𝑖) ·

(︃
𝑖−1∏︁
𝑗=1

(𝑔*(𝑗) + 1)

)︃)︃
+ (𝑔*(𝑖) + 1) (A.15)

=
𝑛max∑︁
𝑖=2

(︃
𝑔*(𝑖) ·

(︃
𝑖−1∏︁
𝑗=1

(𝑔*(𝑗) + 1)

)︃)︃
+ 𝑔*(1) · 1 + 1 (A.16)

=
𝑛max∑︁
𝑖=2

(︃
𝑔*(𝑖) ·

(︃
𝑖−1∏︁
𝑗=1

(𝑔*(𝑗) + 1)

)︃)︃
+ 𝑔*(1) ·

0∏︁
𝑗=1

(𝑔*(𝑗) + 1) + 1 (A.17)

𝑛max∏︁
𝑖=1

(𝑔*(𝑖) + 1) =
𝑛max∑︁
𝑖=1

(︃
𝑔*(𝑖) ·

(︃
𝑖−1∏︁
𝑗=1

(𝑔*(𝑗) + 1)

)︃)︃
+ 1 � (A.18)

which is indeed equation A.6, q.e.d.





B Estimation of necessary cell size of
a PIC-Simulation in solid density
plasmas

The cell size ∆𝑥 of a PIC-simulation is required be small enough to resolve the plasma oscil-
lation ∆𝑥, ∆𝑥 ≈ nm

∆𝑥 ≤ 𝜆plasma

𝑁
;𝑁 > 2 (B.1)

𝜆plasma =
c · 2𝜋
𝜔plasma

(B.2)

𝜔plasma =

√︃(︂
𝑛𝑒 · 𝑒2
𝜖0 ·𝑚𝑒

)︂
(B.3)

∆𝑥 ≤ c · 2𝜋√︂(︁
𝑛𝑒·𝑒2
𝜖0·𝑚𝑒

)︁
·𝑁

(B.4)

𝑁 ... number of cells per wavelength
c ... speed of light
𝑛𝑒 ... electron number density
𝑚𝑒 ... electron mass
𝜖0 ... electric field constant
𝑒 ... elementary charge





C Source code files of prototype
implementation

The concepts described in my thesis have not only been derived theoretically but also practi-
cally implemented in PIConGPU [25]. Due to the large size of the implementation , in total
about 8900 lines, I can not add the implementation to the apendix but, the entire source code
is freely available on github under https://github.com/ComputationalRadiationPhysics/
picongpu/pull/3145.

https://github.com/ComputationalRadiationPhysics/picongpu/pull/3145
https://github.com/ComputationalRadiationPhysics/picongpu/pull/3145
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