There is a newer version of this record available.

Software Open Access

HZDR Multiphase Addon for OpenFOAM

Schlegel, Fabian; Draw, Mazen; Evdokimov, Ilya; Hänsch, Susann; Khan, Harris; Lehnigk, Ronald; Li, Jiadong; Lyu, Hongmei; Meller, Richard; Petelin, Gašper; Tekavčič, Matej


JSON-LD (schema.org) Export

{
  "sameAs": [
    "https://www.hzdr.de/publications/Publ-32194"
  ], 
  "datePublished": "2021-09-29", 
  "version": "3.0.0", 
  "name": "HZDR Multiphase Addon for OpenFOAM", 
  "url": "https://rodare.hzdr.de/record/1195", 
  "inLanguage": {
    "@type": "Language", 
    "alternateName": "eng", 
    "name": "English"
  }, 
  "description": "<p>The HZDR multiphase addon contains additional code for the open-source CFD software OpenFOAM, released by <a href=\"http://www.openfoam.org\">The OpenFOAM Foundation</a>. The developments are dedicated to the numerical simulation of multiphase flows, in particular to the multi-field two-fluid model (Euler-Euler method). Within the OpenFOAM library the multiphaseEulerFoam framework is used for this type of simulation. The addon contains a modified multiphaseEulerFoam named <em>HZDRmultiphaseEulerFoam</em> with the full support of the HZDR baseline model set for polydisperse bubbly flows according to Liao et al. (<a href=\"https://doi.org/10.1016/j.ces.2019.03.007\">Chem Eng Sci, 2019, Vol. 202, 55-69</a>). In addition a solver dedicated to a hybrid modelling approach (dispersed and resolved interfaces, Meller et al., <a href=\"https://doi.org/10.1002/fld.4907\">Int J Numer Meth Fluids. 2021, Vol. 93, 748-773</a>) named <em>cipsaMultiphaseEulerFoam</em> is provided with the addon. This solver has an interface to the <em>multiphaseEulerFoam</em> framework and utilizes all available interfacial models of it.</p>\n\n<p><strong>General enhancements</strong></p>\n\n<ul>\n\t<li>modified turbulent wall functions of Menter according to Rzehak and Kriebitzsch (<a href=\"http://dx.doi.org/10.1016/j.ijmultiphaseflow.2014.09.005\">Int J Multiphase Flow, 2015, Vol. 68, 135-152</a>)</li>\n\t<li>dynamic time step adjustment via PID controller</li>\n</ul>\n\n<p><strong>HZDRmultiphaseEulerFoam</strong></p>\n\n<ul>\n\t<li>bubble induced turbulence model of Ma et al. (<a href=\"https://doi.org/10.1103/PhysRevFluids.2.034301\">Phys Rev Fluids, 2017, Vol. 2, 034301</a>)</li>\n\t<li>drag model of Ishii and Zuber (<a href=\"https://doi.org/10.1002/aic.690250513\">AIChE Journal, 1979, Vol. 25, 843-855</a>) without correction for swarm and/or viscous effects</li>\n\t<li>wall lubrication of Hosokawa et al. (<a href=\"https://doi.org/10.1115/FEDSM2002-31148\">ASME Joint US-European Fluids Engineering Division Conference, 2002</a>)</li>\n\t<li>additional breakup and coalescence models for class method according to Liao et al. (<a href=\"https://doi.org/10.1016/j.ces.2014.09.042\">Chem Eng Sci, 2015, Vol. 122, 336-349</a>)</li>\n\t<li>degassing boundary condition (fvModel)</li>\n\t<li>lift force correlation of Hessenkemper et al. (<a href=\"https://doi.org/10.1016/j.ijmultiphaseflow.2021.103587\">Int J Multiphase Flow, 2021, Vol. 138, 103587</a>)</li>\n\t<li>aspect ratio correlation of Ziegenhein and Lucas (<a href=\"https://doi.org/10.1016/j.expthermflusci.2017.03.009\">Exp. Therm. Fluid Sci., 2017, Vol. 85, 248&ndash;256</a>)</li>\n\t<li>real pressure treatment via explicit turbulent normal stress according to Rzehak et al. (<a href=\"https://doi.org/10.1016/j.nucengdes.2021.111079\">Nucl Eng Des., 2021, Vol. 374, 111079</a>)</li>\n\t<li>configuration files and tutorials for easy setup of baseline cases</li>\n\t<li>GPU-based accelerated computation of coalescence and breakup frequencies for the models of <a href=\"https://doi.org/10.1002/aic.690481103\">Lehr et al., AIChE J, 2002, Vol. 48, 2426-2443</a> (Petelin et al., NENE2021 conf., submitted)</li>\n</ul>\n\n<p><strong>cipsaMultiphaseEulerFoam</strong></p>\n\n<ul>\n\t<li>morphology adaptive modelling framework for predicting dispersed and resolved interfaces based on Eulerian multi-field two-fluid model</li>\n\t<li>compact momentum interpolation method according to Cubero et al. (<a href=\"https://doi.org/10.1016/j.compchemeng.2013.12.002\">Comput Chem Eng, 2014, Vol. 62, 96-107</a>), including virtual mass</li>\n\t<li>numerical drag according to Strubelj and Tiselj (<a href=\"https://doi.org/10.1002/nme.2978\">Int J Numer Methods Eng, 2011, Vol. 85, 575-590</a>) to describe resolved interfaces in a volume-of-fluid like manner</li>\n\t<li>n-phase partial elimination algorithm for momentum equations to resolve strong phase coupling (Meller et al., <a href=\"https://doi.org/10.1002/fld.4907\">Int J Numer Meth Fluids. 2021, Vol. 93, 748-773</a>)</li>\n\t<li>free surface turbulence damping for k-&omega; SST (symmetric and asymmetric damping, Frederix et al., <a href=\"https://doi.org/10.1016/j.nucengdes.2018.04.010\"> Nucl Eng Des, 2018, Vol. 333, 122-130</a>)</li>\n\t<li>sub-grid scale modelling framework:\n\t<ul>\n\t\t<li>additional LES models for the unclosed convective sub-grid scale term</li>\n\t\t<li>closure models for sub-grid surface tension term</li>\n\t</ul>\n\t</li>\n\t<li>configuration files and tutorials for easy setup of hybrid cases</li>\n</ul>", 
  "@context": "https://schema.org/", 
  "identifier": "https://doi.org/10.14278/rodare.1195", 
  "@type": "SoftwareSourceCode", 
  "creator": [
    {
      "@type": "Person", 
      "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", 
      "name": "Schlegel, Fabian", 
      "@id": "https://orcid.org/0000-0003-3824-9568"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", 
      "name": "Draw, Mazen", 
      "@id": "https://orcid.org/0000-0002-0268-9118"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", 
      "name": "Evdokimov, Ilya"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", 
      "name": "H\u00e4nsch, Susann", 
      "@id": "https://orcid.org/0000-0003-1296-5566"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", 
      "name": "Khan, Harris"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", 
      "name": "Lehnigk, Ronald", 
      "@id": "https://orcid.org/0000-0002-5408-7370"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", 
      "name": "Li, Jiadong"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", 
      "name": "Lyu, Hongmei"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", 
      "name": "Meller, Richard", 
      "@id": "https://orcid.org/0000-0002-3801-2555"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Computer Systems Department, Jo\u017eef Stefan Institute, Slovenia", 
      "name": "Petelin, Ga\u0161per", 
      "@id": "https://orcid.org/0000-0001-5929-5761"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Reactor Engineering Division, Jo\u017eef Stefan Institute, Slovenia", 
      "name": "Tekav\u010di\u010d, Matej", 
      "@id": "https://orcid.org/0000-0002-9090-7671"
    }
  ], 
  "keywords": [
    "Multiphase Flow", 
    "Numerical Simulations", 
    "OpenFOAM", 
    "CFD", 
    "Finite volume method", 
    "Baseline model", 
    "Multi-field two-fluid model", 
    "Eulerian-Eulerian model", 
    "Momentum interpolation", 
    "Partial elimination algorithm", 
    "Free Surface"
  ], 
  "license": "https://opensource.org/licenses/GPL-3.0", 
  "contributor": [
    {
      "@type": "Person", 
      "affiliation": "Eidgen\u00f6ssische Technische Hochschule Z\u00fcrich, Swizerland", 
      "name": "Couteau, Arthur"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Faculty of Engineering and Physical Sciences, University of Leeds, United Kingdom", 
      "name": "Colombo, Marco"
    }, 
    {
      "@type": "Person", 
      "affiliation": "CADFEM GmbH, Germany", 
      "name": "Kriebitzsch, Sebastian"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Technische Universit\u00e4t Dresden, Germany", 
      "name": "Parekh, Jigar"
    }
  ], 
  "@id": "https://doi.org/10.14278/rodare.1195"
}
12,587
3,192
views
downloads
All versions This version
Views 12,5871,175
Downloads 3,192248
Data volume 51.0 GB3.8 GB
Unique views 7,963862
Unique downloads 1,693133

Share

Cite as