There is a newer version of this record available.

Software Open Access

HZDR Multiphase Addon for OpenFOAM

Schlegel, Fabian; Draw, Mazen; Evdokimov, Ilya; Hänsch, Susann; Khan, Harris; Lehnigk, Ronald; Li, Jiadong; Lyu, Hongmei; Meller, Richard; Petelin, Gašper; Tekavčič, Matej

Other(s)
Couteau, Arthur; Colombo, Marco; Kriebitzsch, Sebastian; Parekh, Jigar

The HZDR multiphase addon contains additional code for the open-source CFD software OpenFOAM, released by The OpenFOAM Foundation. The developments are dedicated to the numerical simulation of multiphase flows, in particular to the multi-field two-fluid model (Euler-Euler method). Within the OpenFOAM library the multiphaseEulerFoam framework is used for this type of simulation. The addon contains a modified multiphaseEulerFoam named HZDRmultiphaseEulerFoam with the full support of the HZDR baseline model set for polydisperse bubbly flows according to Liao et al. (Chem Eng Sci, 2019, Vol. 202, 55-69). In addition a solver dedicated to a hybrid modelling approach (dispersed and resolved interfaces, Meller et al., Int J Numer Meth Fluids. 2021, Vol. 93, 748-773) named cipsaMultiphaseEulerFoam is provided with the addon. This solver has an interface to the multiphaseEulerFoam framework and utilizes all available interfacial models of it.

General enhancements

HZDRmultiphaseEulerFoam

cipsaMultiphaseEulerFoam

  • morphology adaptive modelling framework for predicting dispersed and resolved interfaces based on Eulerian multi-field two-fluid model
  • compact momentum interpolation method according to Cubero et al. (Comput Chem Eng, 2014, Vol. 62, 96-107), including virtual mass
  • numerical drag according to Strubelj and Tiselj (Int J Numer Methods Eng, 2011, Vol. 85, 575-590) to describe resolved interfaces in a volume-of-fluid like manner
  • n-phase partial elimination algorithm for momentum equations to resolve strong phase coupling (Meller et al., Int J Numer Meth Fluids. 2021, Vol. 93, 748-773)
  • free surface turbulence damping for k-ω SST (symmetric and asymmetric damping, Frederix et al., Nucl Eng Des, 2018, Vol. 333, 122-130)
  • sub-grid scale modelling framework:
    • additional LES models for the unclosed convective sub-grid scale term
    • closure models for sub-grid surface tension term
  • configuration files and tutorials for easy setup of hybrid cases

This work was supported by the Helmholtz European Partnering Program in the project "Crossing borders and scales (Crossing)"
Files (103.2 MB)
Name Size
HZDR-Multiphase-Addon-3.0.0.tgz
md5:e9d898784c9a3c89da581c03c3ce9ace
416.9 kB Download
OpenFOAM-dev.tgz
md5:b0c6051559e7914a2e5a10d480157c5b
90.1 MB Download
README.md
md5:f53f6f54ba6e3dc0f08345b6008cd724
2.1 kB Download
ThirdParty-dev.tgz
md5:e7d37cf428a3e4f7097bc8232f829ec9
12.7 MB Download
  • Hänsch, S., Evdokimov, I., Schlegel, F., & Lucas, D. (2021). A workflow for the sustainable development of closure models for bubbly flows. Chemical Engineering Science, 116807.

  • Meller, R., Schlegel, F., & Lucas, D. (2020). Basic verification of a numerical framework applied to a morphology adaptive multifield two‐fluid model considering bubble motions. International Journal for Numerical Methods in Fluids.

  • Rzehak, R., Liao, Y., Meller, R., Schlegel, F., Lehnigk, R., & Lucas, D. (2021). Radial pressure forces in Euler-Euler simulations of turbulent bubbly pipe flows. Nuclear Engineering and Design, 374, 111079.

  • Tekavčič, M., Meller, R., & Schlegel, F. (2021). Validation of a morphology adaptive multi-field two-fluid model considering counter-current stratified flow with interfacial turbulence damping. Nuclear Engineering and Design, 379, 111223.

12,587
3,192
views
downloads
All versions This version
Views 12,5871,175
Downloads 3,192248
Data volume 51.0 GB3.8 GB
Unique views 7,963862
Unique downloads 1,693133

Share

Cite as