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Abstract A modified phase-field model is presented to numerically study the
dynamics of flowing foam in an obstructed channel. The bubbles are described
as smooth deformable fields interacting with one another through a repulsive
potential. A strength of the model lies in its ability to simulate foams with
wide range of gas fraction. The foam motion, composed of about hundred
two-dimensional gas elements, was analyzed for gas fractions ranging from 0.4
to 0.99, that is below and beyond the jamming transition. Simulations are
preformed near the quasi-static limit, indicating that the bubble rearrange-
ment in the obstructed channel is primarily driven by the soft collisions and
not by the hydrodynamics. Foam compression and relaxation upstream and
downstream of the obstacle are reproduced and qualitatively match previous
experimental and numerical observations. Striking dynamics, such as bubbles
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being squeezed by their neighbors in negative flow direction, are also revealed
at intermediate gas fractions.

Keywords Flowing foam, computational method, phase-field method,
obstructed channel.

1 Introduction

The flow of foam and froth plays a major role in many industrial applications
such as mineral recovery [1], food processing [2], fabric dyeing [3], production
of light-weight materials [4] and insulation components [5]. Despite its indus-
trial significance, many of the mechanisms, such as soft collisions, governing
the foam dynamics remain to be elucidated [6]. One reason for this insuf-
ficient knowledge is that most established flow measurement techniques are
not directly applicable to foam flow. Consequently, most experiments are con-
ducted in two-dimensional configurations employing optical observation [7].
Novel measurement techniques applied to foam, such as Ultrasound Doppler
Velocimetry [8], Neutron Imaging [9], Positron Emission Particle Tracking [10],
Nuclear Magnetic Resonance [11], or X-raying [12] are not yet commonly es-
tablished and suffer from limitations.

Numerical simulations are a valid alternative to investigate flowing foams
in three-dimensional domains. Large advances in this field have been achieved
with the Surface Evolver [13], which discretizes the air-liquid interfaces of the
foam with a triangle mesh. Under a bubble volume conservation constraint, it
then iteratively redistributes the triangle nodes to find the energy minima in
terms of foam shape. Quasi-static dry foam motion around a spherical obsta-
cle was simulated [14]. The authors derived from two-dimensional simulations
pressure fields, plastic events and drag and lift forces acting on the obstacle.
Two-dimensional wet foam shearing in unobstructed channel was also sim-
ulated with the Surface Evolver [15]. Bubble displacements in the transverse
shear direction and elastic—plastic deformation of the foam were analyzed. Fur-
ther numerical methods can also be found in the literature. The vertex model,
where the dry foam is represented by a set of polygons, has been used to
study foam shearing [16,17]. In the latter work, two-dimensional simulations
of foam shearing in an unobstructed channel were performed. The authors in-
vestigated the foam stress in the non-quasi static regime and found that the
number of topological rearrangements, so-called T1 events, correlated with
bubble elongation. The two-dimensional soft-disk model has also been applied
to simulate shear foam flows [18-20]. In this model, the disk-like bubbles ex-
perience a repulsive spring force whenever an overlap occurs. In Reference
[20], two-dimensional simulations were performed for a relatively wide range
of shear rates and two distinct regimes with qualitatively different bubble dy-
namics reported. Lattice Boltzmann simulations [21,22] have been performed
to determine the rate of plastic events in a Poiseuille foam flow. More re-
cently, another approach was adopted by Kéhéaré et al. [23], who discretized
each two-dimensional bubble into a series of segments subjected to surface
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tension, pressure gradient and contact visco-elastic forces. In Reference [23],
two dimensional foam shearing was also studied. These type of simulations can
compute the structural response of the foam, stress, strain and velocity dis-
tributions. However, these methods do not behave properly for wide range of
gas fraction within the foam. Thus, these models are not applicable if bubbles
are not in contact with one-another. This typically occurs below the jamming
point, which for randomly packed, poly-disperse bubbles corresponds to gas
fractions eop & 0.85 [24,25] and e3p = 0.64 [26,27] in two and three dimen-
sions, respectively.

Close to the jamming point, Heitkam et al. [27] carried out numerical simu-
lations of foam dynamics with the immersed-boundary method [28-30]. These
simulations also solved the Navier-Stokes equation for the interstitial liquid
flow and thus, allowed to compute the formation of foam from rising bub-
bles. By suggesting a bubbles collision model, Heitkam et al. [27] also inves-
tigated the shearing of bubble clusters. These above simulations are however
restricted to spherical bubbles and, thus, loose validity if large bubble deforma-
tion occurs. To alleviate this, a modified phase-field model is here suggested
as a numerical alternative to the immersed-boundary method. This model
hence bridges the gap between the existing Surface-Evolver and the available
immersed-boundary methods. On the one hand, it deals with interacting bub-
bles subject to large deformations and, on the other hand, with the movement
of individual bubbles carried away in regions of low gas fraction. The method is
here applied to mono- and poly-disperse foam flowing in an obstructed chan-
nel at gas fractions below, near and above the jamming point. Phase-field
models constitute a class of efficient computational methods that allows one
to investigate three-dimensional foam dynamics. In the following, we restrict
however ourselves to two-dimensional systems and demonstrate the ability of
the method to handle collision-dominated cases. Three-dimensional systems
will be included in future works.

2 Methods
2.1 Foam model

The general idea behind the phase field modeling is to introduce a dimen-
sionless identification function, also called order parameter, that continuously
varies over a thin interfacial region. The sharp fluid interface between the gas
and liquid phases is hence smeared out with a thin but nonzero transitional
region. We refer the reader to the review article [31] for further information
on the phase-field modeling of multi-component flows. The model presently
employed is a modified version of the phase field model by Nestler et al. [32]
that has been used in the field of biology, where cell-cell interactions are key
in understanding the migrating dynamics of cell colonies [33]. Each bubble i
is here associated with an identification function ¢;(x,t), where = (x,)"
is the spacial coordinate and ¢ the time. As one moves from the bubble inner
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Fig. 1 Smoothly transitioning identification function arbitrarily shown for the 8-th bubble.

region to the outer region, ¢; undergoes a smooth but rapid transition from
unity to zero over the interfacial width & [34]. Figure 1 describes a typical
smoothly-transitioning identification function along the two coordinate axes
crossing the bubble center of mass. The equilibrium foam state was obtained in
a square box with a periodic boundary condition in the two spatial directions.
Each bubble “sharp” interface, shown in blue in the Figure, is hereafter defined
by the isoline ¢; = 0.5. To compute the dynamic foam flow, each identification
function is updating in time and space by solving

0o;
ot

Fue Vo=~ (fit fy — €V6). 1)

where u is a velocity field, T a response time associated with the foam dynamics
and fp, respectively, f. the bulk and repulsive terms discussed below. The
advection term w - V¢; on the left-hand side of Equation 1 transports the
foam, while the right-hand side term ensures an energetically stable foam
conformation. The bulk term, which ensures ¢; = 1 inside the bubble and zero
elsewhere, is given by

Jo(¢i) = 40 (i — dc) (¢ — 1) . (2)

The area of each two-dimensional bubble is maintained through the correction
b =1/2+a(A;/(A;)g —1) [35], where o > 0 is a growth rate, A;(t) = [ 2dr
the modified area at time ¢ [36], dr an infinitesimally small area element and
(A;)o a constant value initially set. This correction causes the bubble area to
expand, respectively shrink, until the condition A; = (fli)o is satisfied. The
tilde is hereafter introduced to distinguish between the modified area A; and
its standard counterpart A; = f ¢;dr mostly used in the result section. The

repulsive term in Equation 1, which prevents bubble overlapping [36], is given
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by

fr(@is @) = B Z 3 (3)

i#]

where 3 > 0 controls the strength of the repulsion. The last term —£2V2¢; is
an interfacial contribution resulting in an energy excess across the smoothly
spreading interface [37]. A link between the tuning parameter 8 and experi-
ments involving foam films stabilized by surface active agents [38] can well be
established. As the separating distance h between two bubble surfaces dimin-
ishes, surface active agents adsorbed at those interfaces rearrange resulting
in the formation of thick adsorption layers [39]. This surface interaction, ex-
pressed by the disjoining pressure in experimental tests, becomes significant
when the film thickness drops below h < 100 nm [40]. In a similar fashion, the
parameter 3 controls the separating distance h, typically a few mesh elements,
over which two neighboring bubbles experience strong repulsion. Linking the
parameter « to any physical foam-associated quantity is however difficult. The
term « is a pure numerical parameter that turns the Allen-Cahn Equation 1
into a conservative form [41]. It has been shown that, for a single bubble,
the term « can safely be removed by using a Cahn-Hilliard formulation [42].
This comes however at a cost, that would be the arising complex biharmonic
operator (V%) in the interfacial term.

To ease the implementation, the immersed wall is treated as an additional
immobile identification field ¢,,(x), which can be regarded experimentally as
a free-slip hydrophilic wall boundary. That means, upon contact with the wall,
there is no friction and the two normal vectors n,, = V¢,, and n; = V¢, tend
to remain parallel. The general form of a smooth wall is given by a smooth
hyperbolic tangent profile defined as

1 1 d(x)
Gw(x) 573 tanh [\/55} : (4)
where d(x) is the field describing the shortest signed distance to the ideal
sharp wall interface, with positive values in the fluid region [43]. The choice for
this wall representation is justified. In the simplified one-dimensional scenario,
Equation 4 happens to be the equilibrium solution of 4¢., (¢, —1/2) (¢ —1) =
£2(0%¢,,/0x?), which corresponds to a free energy minima [44], hence the coef-
ficient 4 preceding the bulk term in Equation 2. The advection and Laplacian
terms in Equation 1 are discretized in space using a second-order finite dif-
ference and a compact fourth-order scheme, respectively. These two terms are
integrated in time using an explicit first-order Euler and an implicit second-
order Crank-Nicolson method, resulting in the following algebraic system

v) ot
)

where ¢! is the i-th identification field known at the beginning of each time
step, ¢! 9 the field to be found and &t the time step.

K2

ote?

2T

(1= %2 o = twtt) vt = 2oty Lot 0+
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Fig. 2 Workflow used to create the foam: (a) initial chess-board like foam structure, (b)
bubbles grow, respectively, shrink until they reach their prescribed areas, (c) bubbles ex-
pand mostly vertically to occupy empty spaces, (d) bubbles rearrange into an energetically
favorable state.

The present model takes ingredients from the Lattice Boltzmann Method
originally suggested by Benzi et al. [21] for foam simulations running on
Graphics-Processing-Units. The dynamics of the system are, here too, driven
by the minimization of a free energy. The above transport model is imple-
mented using the Portable Extensible Toolkit for Scientific Computation, a
widely used open-source library for the scalable solution of partial differential
equations [45]. Parallel simulations with Message-Passing-Interface are pre-
sented in the following. With a two-dimensional flow domain discretized into
about 40,000 nodes, about 100 gas bubbles and a 16-Central-Processing-Unit
core available on most high performance computing centers, up to a month is
the typical time needed for a complete dynamic simulation. Despite the ex-
cellent performance of the code, the number of gas bubbles (N,) does set a
limit on the computational gain. Solving the transport Equation 1 N, times
at each iteration is simply prohibitive. Compared to other foam simulation
tools cited in the introduction, the present method has one major advantage.
It is namely the capability to consider bubbly flow, wet and even dry foams
coexisting in one single simulation. This allows to investigate in particular the
flowing behavior of wet foam near and across the jamming limit.

2.2 Set-up

A periodic channel with height H and length L = 1.714H is obstructed by
two semi-disks with radii R = 0.193H. A schematic of the channel and its
coordinate system is given by Figure 2a. The channel is filled with N, = 96
bubbles with specific size distributions and pre-defined gas fractions e. To
achieve the initial equilibrium states, from which the dynamic simulations
can start, several workflow steps are required. As illustrated in Figure 2a, the
identification functions ¢; are first initialized to squares of equal sizes arranged
in a chessboard-like structure with € =~ 0.5. At this stage, the exact value ¢
is not critical. The desired gas fraction is achieved by prescribing the initial
areas (/Nli)o to each individual bubble. These are randomly sampled using a
standard uniform distribution, whose arithmetic mean A results from

Ny A

T HL—R® ©)
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Mono-disperse Poly-disperse
d/H o/H € d/H o/H e
0.087 <1073 0.354 | 0.086 0.013 0.360
0.096 <1073 0.437 | 0.096 0.014 0.444
0.105 <1072 0518 | 0.105 0.016 0.527
0.113 <1073 0.599 | 0.112 0.016 0.609
0.120 <103 0.679 | 0.120 0.018 0.690
0.127 <1073 0.756 | 0.126 0.019 0.768
0.132 <10~% 0.829 | 0.132 0.019 0.839
0.137 < 10~% 0.888 | 0.137 0.020 0.900
0.141 <1073 0.936 | 0.140 0.021 0.945
0.145 <1073 0.999 | 0.144 0.021 0.999

Table 1 Bubble size distribution with d and o being the respective mean equivalent diam-
eter and standard deviation.

Equation 1 is then numerically solved with w = 0. Throughout this preliminary
relaxation, the bubbles grow, respectively shrink in size. After being squeezing
in the vertical channel direction to occupy the empty spaces (Figure 2b-c),
the poly-disperse bubbles eventually become spherical and rearrange into an
energetically favorable state (Figure 2d). The convergence is here achieved
when > [¢;(t + 6t) — ¢;(t)] < €, with € being an arbitrarily small value. In
the presented simulations, it is set to € = 0.1. A smaller value did not lead
to convergence, because the bubble area is never constant but oscillates with
a very small amplitude over time. All mono- and poly-disperse equilibrium
states are obtained by restarting the state in Figure (2d) with appropriate
areas A;. Table 1 lists the arithmetic mean of the equivalent diameter d and the
corresponding standard deviation ¢ for each mono-disperse and poly-disperse
configuration. Note, that the standard deviation does not equal zero in the
mono-disperse cases, because the area A; of a bubble never reaches the preset

area (A;)o perfectly. The equivalent diameter is given in a two-dimensional

system by
44, 1/2
d; =
() ™

with A; = [ ¢;dr. In the resulting equilibrium foam states illustrated in Fig-
ure 3, different foam structures are well distinguishable. Away from the obsta-
cle, a hexagonal close-packed two-dimensional crystalline structure is observed
for the mono-disperse foam. As expected for the hexagonal pattern, each bub-
ble is in contact with exactly six neighbors. With vanishing liquid fraction,
Plateau borders eventually form [46]. In the limiting case ¢ — 1, the bubbles
take polygonal shapes, in-line with previous experimental observations [47,48].
With the obtained equilibrium states as initial foam structures, the dynamic
simulations are performed. To this end, the foam is advanced in time using a
constant horizontal velocity u,. The advective term in Equation 1 is hence set

u(e) = | )
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Fig. 3 Selected equilibrium foam states considered in this study. The upper and lower rows
illustrate the mono- and poly-disperse foams, respectively. € is the gas fraction.

The periodicity makes it difficult to drive the foam flow with a realistic
pressure gradient. Numerical workarounds with the Surface Evolver have been
suggested in the past. See for instance references [49,50], where the foam is
transported by small and targeted bubble area increments at each iteration.
A constant flow rate could also here be achieved by setting a velocity field u
that changes in time and probably space. Enforcing this is however difficult,
especially at high gas fractions. We here decide to drive the flow by shifting all
bubbles with a small incremental distance (u,0t) over the duration of one time
step (dt). This is here achieved by prescribing the constant advection velocity
u; in Equation 8. The velocity u, is our attempt to reproduce the quasi-
two-dimensional experimental system in References [51,22]. In such systems,
a horizontal mono-layer bed of bubbles is confined between either a column
of water and an upper plate or between two plates. Experimentally, the foam
velocity is set at the inlet by imposing a constant flow rate. In reality, the
Eulerian velocity w should vary in space. That is however not the case in the
presented simulations. In the constriction for example, that is at x = 0, u
should increase because of mass conservation and at the wall, it should be
zero. A constant u, might rather be reminiscent of the flotation process [1],
where swarms of gas bubbles rise in a liquid tank with a constant terminal
velocity because of buoyancy. Nonetheless, this first work is an alternative and
promising method for future foam simulations. Extension of this foam model
to account for better flow conditions is currently on-going [52], yet it requires
additional efforts for gas fractions approaching unity, such as a dynamic mesh
refinement algorithm to compute the liquid velocity in the interstitial spaces.

3 Results

Equation 1 is implemented in its non-dimensional form using the Peclet num-
ber given by Pe = Tu, /A, where u, is the constant advection velocity present
in Equation 8 and A the size of one two-dimensional grid element. The Peclet
number relates the convective to the diffuse transport. The limiting case
Pe — 0 corresponds to the scenario, in which the foam reaches an equilibrium
in terms of minimum elastic energy at each time step. With a Peclet num-
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ber set to Pe = 0.01 in all presented simulations, the foam flow approaches
the quasi-static limit, indicating that the bubble rearrangement is primarily
driven by the soft collisions and not by the hydrodynamics, in turn warranting
the absence of a Navier-Stokes solver at this stage. Besides, foams in flotation
and fundamental experiments are performed well beyond the critical micelle
concentration to ensure fully covered interfaces and stable lamellas. Thus inter-
facial rheology and Marangoni stress might be neglected in this first attempt.
The results are analyzed over one flow-through time, defined as T = L/u,,
starting after a transient time period, that is 0.5 < ¢t/T < 1.5. The growth
rate and the repulsion parameter are respectively set to « = 1 and g = 1.
Unless otherwise specified, the interfacial width equates the size of one grid
element, that is £ = A. The time step t is calculated from the Courant
number here set to Co = (u,6t)/A = 10~*. The entire channel is discretized
into 240x 150 nodes in the axial and transverse flow directions, resulting in a
grid-independent solution (See Appendix A).

3.1 Bubble trajectories and foam velocity

Using a periodicity correction [53], the position of each center of mass is first
calculated as X; = [X;,Y;]" = [ ¢;dr/ [ dr. Figure 4 shows the bubble trajec-
tories X;(t) for selected simulated cases. At very low gas fraction (¢ = 0.44),
the bubbles tend to remain in the channel core. With increasing gas fraction,
the foam expands vertically to gradually fill the stagnant lower and upper
cavity zones between the obstacles. At gas fraction ¢ ~ 0.7, the stagnant zone
persists only downstream of the obstacles, in-line with previous observations
[54]. At same gas fraction, the bubble paths in the channel center do not seem
to exhibit any ordered patterns. Crossing bubble trajectories are frequent and
even more frequent in and further downstream of the channel minima, that
is at position /L = 0 where the vertical distance between the two obsta-
cles is the shortest (See Figure 2a). Such a chaotic behavior is reminiscent
of two-dimensional gas bubbles rising at low-Reynolds number [55]. With in-
creasing gas fraction (¢ ~ 0.84 and € = 0.99), stagnant zones vanish and the
bubbles eventually travel along relatively well-ordered non-intersecting paths,
suggesting a ”laminar” foam flow away from the obstacle [56]. In the chan-
nel minima, crossing trajectories occur irrespective of the gas fraction. The
instantaneous bubble velocity is conveniently calculated from the bubble path
as V;(t) = (Va,V,),] = dX;/dt. Figure 5 shows an instantaneous snapshot
of the flowing foam overlaid with the velocity vector placed at each bubble
center of mass. An animation can be found in the supplementary material.
Figure 5 suggests an accelerating foam flow in the channel minima for high
gas fractions. For comparison purposes, the time-averaged foam velocity field
has been compared to that obtained with the potential flow theory. Given an
incompressible and invicid single-phase fluid flowing over a infinite cylinder
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Fig. 4 Sample of bubble trajectories X (t), calculated at the bubble center of mass. The
upper and lower rows illustrate the mono- and poly-disperse foams, respectively. ¢ is the gas
fraction.

Fig. 5 Instantaneous foam states arbitrarily taken from the dynamic simulations. The black
arrows located at the bubbles’ centers represent the velocity vectors. The upper and lower
rows illustrate the mono- and poly-disperse foams, respectively. € is the gas fraction.

[57,58], the laminar velocity is given in the polar system (e;,,eq) by
ur(r,0)/uy = [1 — (%)2} cos(0)

(9)
ug(r,0)/u, = — [1 + (%)2} sin(9)

where r is the distance from the obstacle center and 6 the polar angle. In
the potential flow theory, the boundary condition for the velocity is set to
ur(R,0) = 0. To calculate an average foam velocity at any given point @, the
velocity of all bubbles moving in the vicinity of that point, that is | X; — x| < ¢
with ¢ being an arbitrary distance of some bubble diameters, is averaged in
time. Figure 6 shows the comparison between the time-average foam velocity
field with that obtained with the potential flow theory. The simulated foam
velocity field somewhat agrees with the potential flow theory. The flow di-
rections are similar both in the near-obstacle and the core channel regions.
Near the obstacle, the foam flows in the tangential direction ey, while in the
core region, the foam flows in the channel streamwise direction. Differences
to the potential flow are indeed excepted and results from the viscoelastic
nature of the foam. These have been extensively discussed in previous experi-
mental [49,51,59] and numerical investigations with the Surface Evolver [14].
Figure 6 also shows, that with increasing gas fraction, the velocity generally
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Fig. 6 Foam velocity vectors (black) overlaid with those obtained with the potential flow
theory (orange). The upper and lower rows illustrate the mono- and poly-disperse foams,
respectively. ¢ is the gas fraction.

0.8 1

Vo /uq

0.6 r —e— Mono-disperse foam N

------ Poly-disperse foam
0571 Standard deviation b
—— Linear fit (V,/u, = —0.7%)

04 1 1 1 1
03 04 05 06 07 08 09 1.0

Gas fraction ()

Fig. 7 Decrease of the mean foam velocity V, with increasing gas fraction . The foam
velocity is normalized with the prescribed advection velocity u,. The linear curve is fitted
to both mono- and poly-disperse data points.

decreases in magnitude. This is attributed to the increasing number of soft
collisions, leading to kinetic energy dissipation. The model hence reflects well
the pressure loss increasing with the overall gas fraction [60]. A comparison to
experimental data [51] in the vicinity of the spherical obstacle is provided in
Appendix B.

To further assess the effect of the soft collisions, the mean foam velocity V
is plotted against the gas fraction in Figure 7. To calculate V., we average the
velocities V,, of the bubbles, for which the center of mass is located near the
periodic boundary, that is —L + A < VX; < L — A, with A being an arbitrarily
small distance, typically in the order of some grid elements. Below ¢ < 0.5,
the mean foam velocity equates the prescribed advection velocity w,. This
is expected because of the very few collisions. With higher gas fractions, the
mean foam velocity decreases linearly as V,./u, = —0.79, as illustrated by the
straight line fitted with the least-squares method. One may also note that the
normalized bubble velocity (Vy);/u, fluctuates by about £0.05. This occurs
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Fig. 8 Foam velocity profile V¢(z) computed at the channel center line. For improved com-
parison between the different gas fractions, the streamwise velocity profiles are normalized
with the foam velocity Ve.(x = -L/2) determined at the periodic boundary.

because the post-processed center of mass X (t) does not smoothly evolves
with time due to the collisions.

The time-average velocity along the channel center line V. (z) provides fur-
ther insight into the foam flow. For comparison purposes, we perform addi-
tional flow simulations with the open-source flow solver OpenFOAM [61], here-
after termed Computational Fluid Dynamics (CFD) simulations. The available
power-law model is used [62] because of its relatively good accuracy in pre-
dicting foam flows in pipes [63]. This rheological model relates the apparent
kinematic viscosity of the foam (v) to the strain rate (¥) as v = k4"~! for
Vmin < V < VUmagz, Where k is the consistency coefficient and n the power-law
index. We set the following properties to the foam, namely k = 0.001 m?2s™~2,
n = 0.8 [63], Vmin = 1075 m? /s (magnitude order for water) and v,,q, = 107°
m? /s (magnitude order for air). Fine changes in the minimum and maximum
values of the viscosity did not show any significant differences in the result-
ing velocity field. On each wall a slip boundary condition in imposed, in-line
with the present implementation. Equation 9 along with the numerical so-
lutions obtained with two OpenFOAM solvers, namely ”potentialFoam” and
"nonNewtonianlcoFoam” are shown in Figure 8. At low gas fraction, that is
€ < 0.52, the streamwise profile is significantly different to that obtained with
the CFD simulations. The velocity V.(z) first decreases until it reaches the
position z = 0.35L to then follow a bell-shaped curve peaking downstream of
the channel minima at about x &~ R/L. The results obtained at low gas frac-
tion should however be interpreted with caution, because the hydrodynamics
associated with the viscous and inertial effects of the interstitial liquid are
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Fig. 9 Successive snapshots illustrating a single gas bubble being squeezed in the opposite
flow direction (¢ = 0.83). The orange dots represent the trajectory, plotted at regular time
interval, of the bubble centre of mass.

here left out. At intermediate gas fraction, that is € > 0.68, the streamwise
velocity qualitatively matches that obtained with the power-law model. The
velocity peaks at the channel minima, that is at position z/L = 0. Besides,
the peak magnitude generally increases with the gas fraction. An important
message emerging from Figure 8 is that, with the exception of € ~ 0.84, the
poly-dispersity has a minor effect on the foam flow. Near this intermediate gas
fraction, that is € = 0.84 for the mono-disperse foam, the streamwise velocity
curve V(z) exhibits a relatively wide double-peak across the obstacle length.
Such a double peak is not seen in the corresponding poly-disperse scenario.

The bubble rearrangement near the obstacle is complex and can not be
precisely analyzed with only time-averaged data. Figure 9 shows for instance
a bubble being squeezed in the backward flow direction. The bubble ejection
mechanisms are solely attributed to the soft collisions occurring at intermedi-
ate gas fraction.

3.2 T1 events

The plastic behavior of foams is caused by irreversible topological rearrange-
ments, known as T1 events. According to Cantat et al. [47], a T1 event occurs
when four Plateau borders meet at one node. The configuration becomes un-
stable and leads to a spontaneous bubble rearrangement reducing the surface
energy of the system. We visually searched in the image sequence of the dri-
est configurations (¢ = 0.99) for the locations and times, at which T1 events
occurred [64]. The results are depicted in the Figure 10 for the mono- and
poly-disperse foams. In both cases, the frequency of T1 events increase near
the obstacles, with a further increased occurrence in the upstream region. This
finding matches those previously reported in previous numerical [14] and ex-
perimental studies [15,51]. In terms of T1 events, the effect of poly-dispersity
is here noticeable. On the one hand, T1 events observed in the flowing mono-
disperse foam occur mostly at constant locations. This is because the same-
sized bubbles tend to follow somewhat organized trajectories with only few
crossing paths. On the other hand, small bubbles evolving in the poly-disperse
foam are more likely to cross trajectories (See Figure 4). This in-turn intro-
duces sporadicity as well as a wider spacial distribution of the topological
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Fig. 10 Number of T1 events manually detected in the driest configurations by stepping
one frame at a time through the image sequence.
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changes near the obstacles. A total of 241 and 285 T1 events are here re-
ported for the mono- and poly-disperse scenarios, respectively. This converts
to a 18% increase in the number of T1 events occurring as a result of foam
poly-dispersity.

The obstacle can be regarded as an artificial wall roughness. Consequently,
the bubbles at the wall would remain immobile while those near the channel
centerline would move faster. However, as can be seen in Figures 6-7, this
did not occur. We had hoped to observe an accumulation of T1 events along
some horizontal lines. The spatial distribution of the T1 events does however
not point to any shear localization or shear banding [65]. Figure 10 shows
that the T1 events occur mostly up- and downstream of the obstacle, not
supporting the prediction of shear banding. Three-dimensional simulations and
an appropriate subgrid wall boundary condition would probably be necessary
to further investigate shear banding.

3.3 Gas pressure

A strength of the phase-field model is its ability to conveniently calculate a
surface tension force Fj;(x,t) that is nonzero across the diffuse bubble interface
and from which a pressure field p;(x,t) is derived. The surface tension force,
made here non-dimensional with the interfacial width £ and the surface tension
7, is calculated as [42,66]

Fi(z) _ {—3\/§v. (;g;l) Voi| Vs if [ni| > e, -

7€ 0 otherwise,

where n; = V¢; is the vector normal to the smooth bubble boundary, k; = V-
(n;/|n;|) the local curvature and € an arbitrarily small value. An advantage of
the above formulation is that the field F; is solely function of the identification
function ¢;. In the quasi-static limit, as is the case here because of the low
Peclet number, it is fair to assume, that the pressure gradient cancels out the
surface tension force as
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Fig. 11 Pressure difference as a function of the bubble diameter for a single bubble in
equilibrium. The abscissa and ordinate are normalized with the surface tension - and the

size of a mesh element A. The theoretical black line corresponds to the solution of the
Young-Laplace equation.

By applying the divergence operator on each side of Equation 11, that is
V2p; = V - F;, a pressure field for each bubble is determined. Equation 10 is
here validated against the solution of the Young-Laplace equation. For an in-
finite cylinder, the theoretical pressure difference is given by |pin — Dout| = v/
[67,68], where r = d/2 and p;, and p,y: are the pressures inside and outside
the bubble, respectively. In Figure 11, a set of equilibrium solutions are com-
pared to their theoretical counterparts for increasing bubble diameter d. With
an interfacial width set to £ = 2A and a minimum of 15 grid points descritizing
the bubble diameter, the results are in excellent agreement with the theory.
In all other simulations, the interfacial width is set to & = A. With such, rela-
tively good results are still achieved. The blue curve is best-fit and is hereafter
used as the reference pressure pg, so that for an uncompressed disk-like bub-
ble, the normalized pressure p;/py equates unity in the gas and zero outside.
To calculate an instantaneous pressure field p(x,t), we proceed as follows.
The algebraic system given by Equation 11 is first solved using a Newton-like
nonlinear solver [45] for each bubble, that is Nj times. All bubble-associated
pressure fields are then summed as p = Y p;. The resulting overlay is shown
in Figure 12. At low gas fraction, that is here ¢ = 0.44, the pressure inside
each bubble equates the reference pressure pg. With increasing gas fraction,
that is here € = 0.68, the pressure equates unity mostly downstream of the
obstacle where expansion occurs. In that channel area, the bubbles have few,
if any, neighbors and hence remain spherical. Right upstream of the obstacles,
the pressure increases by 10 to 20 %. At intermediate gas fraction, that is
e = 0.83, the pressure inside the bubble equates 1.2py and increases up to
1.5pg upstream of the obstacle. For the last scenario, that is € = 0.99, the
gas pressure increases even more and its distribution inside each gas bubble
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p(x)/po

Fig. 12 Instantaneous snapshot the gas pressure overlay p = > p; calculated for each
bubble. For an uncompressed spherical bubble p/po = 1. The upper and lower rows illustrate
the mono- and poly-disperse foams, respectively. € is the gas fraction.

is highly heterogeneous. The pressure contours in Figure 12 do not reveal any
noticeable differences between the mono- and poly-disperse scenarios. Even
though the simulations approach here the quasi-static limit, the surface ten-
sion force in Equation 10 could be used as source term in the Navier—Stokes
momentum equation.

3.4 Compression dynamics

Compression refers here to the local change in liquid fraction. The volume
of each bubble is conserved by the correction term in Equation 1. The foam
dynamics can be further studied using the bubble circularity, which indicates
not only the degree of deviation from a perfect disk, but is also a measure
of the local shear stress within the foam [69]. A number of indices have been
proposed to measure the circularity of an object [70]. We here use the area-
based parameter originally defined in two dimensions by Cox [71] as

ci(t) = (?)2 (12)

where P, is the perimeter of the i-th bubble. At low gas fraction and away from
the obstacle, the circularity should equate unity because bubbles are circular in
shape. The circularity of squeezed bubbles will however vary between zero and
unity. Figure 13 shows a snapshot of the foam colored by circularity and Fig-
ure 14 the corresponding time-averaged field. As expected, the circularity is
mostly ¢ = 1 away from the obstacle at low (¢ = 0.44 and 0.68) and intermedi-
ate gas fractions (¢ = 0.83). In these three scenarios, the bubble deformation
occurs mostly upstream of the obstacle. At higher fractions (¢ = 0.99), the
circularity decreases in the entire domain because of the hexagonal shape of
the bubbles. A pronounced decrease in circularity is also observed at higher
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Fig. 13 Instantaneous snapshot of foam colored by circularity. The upper and lower rows
illustrate the mono- and poly-disperse foams, respectively. ¢ is the gas fraction.

1.0 0.95 0.9 0.85 <08
Circularity (c)

Fig. 14 Time-averaged foam circularity. The upper and lower rows illustrate the mono-
and poly-disperse foams, respectively. € is the gas fraction.

fraction near the obstacle. In this area, the hexagons elongate in the flow direc-
tion in-line with previous simulations in obstructed channels with the Surface
Evolver [72].

An additional measure of foam disorder is the number of neighbors each
bubble has. In the spirit of the phase-field model, a natural way to compute
the number of neighbors is to look at the value ¢;¢;|;2; > 0 from the smooth
bubble contours [36]. Our tests showed however, that this neighbor detecting
method does not work well at intermediate gas fraction because the shortest
separation distance between two bubble contours is typically in the order 1 to
2 A. For these reasons, the shortest distance was calculated directly from the
sharp bubble surface defined by the isoline ¢ = 0.5. Figure 15 shows results of
the neighbor-detecting algorithm. A slight overlap between the isolines only
occurs at gas fractions approaching unity, that is € — 1. In such cases, the
overlap did not exceed one grid size A. In the following, a bubble contact is
counted whenever the shortest distance between two isolines is lower than one
grid size element. As seen in Figure 15, at low gas fraction (¢ = 0.44 and 0.68)
the bubbles have no neighbors, which coincides with a gas pressure p = pg
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Fig. 15 Neighbor-detection. Each blue marker indicates that the shortest separation dis-
tance falls below the grid size A. The integer inside each bubble refers to the number of
neighbors N. The upper and lower rows illustrate the mono- and poly-disperse foams, re-

spectively. The term ¢ is the gas fraction
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Fig. 16 Time-averaged number of bubble neighbors (NN) in the axial direction (Solid line:
mono-disperse foam, dashed line: poly-disperse foam.)

and a circularity ¢ = 1 worked out earlier in Figures 12 and 13, respectively.
Since the gas fraction is below the jamming point, the bubbles are not in
permanent contact with one another. At high gas fraction (¢ = 0.99), each
bubble of the mono-disperse foam has exactly 6 neighbors in the channel core,
corresponding the crystalline structure. Figure 16, which illustrates the time-
averaged number of neighbors along the axial direction x, reveals striking
features for each gas fraction. At low and intermediate gas fractions, that is
below ¢ < 0.8 (blue curves), the foam turns into a compact state upstream
of the obstacle to then relax across the channel minima (—R < z/L < R).
At high gas fraction, that is e > 0.9 (green curves), the foam exhibits in the
entire channel a highly ordered state with nearly six neighbors throughout,
corresponding to the hexagonal packing. However, downstream of the obstacle
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the packing is disturbed and diverges from its hexagonal structure. Striking,
yet different features are observed for the in-between gas fraction (¢ = 0.84,
orange curve). The foam is in a compact state away from the obstacle and
relaxes to some extent as it moves through the channel minima. Foam poly-
dispersity only a has minor effect in terms of average neighbor numbers, when
compared to the reference mono-disperse case.

4 Conclusions

A modified phase-field method has been successfully introduced for the simu-
lation of flowing mono- and poly-disperse foams. In this method each bubble
is described with a smooth transitioning identification function ¢;. This en-
ables investigation of a wide variety of scenarios, ranging from the strong
deformation of highly packed bubbles down to loosely packed and even in-
dividual bubbles. The transition between both states, such as the formation
of dry foam from rising bubbles could also well be covered with the present
model. This is a rather difficult task to overcome with other currently avail-
able numerical methods. The model was applied to investigate the compression
and relaxation dynamics of foam as it passes through a channel with confine-
ment. Many of the properties observed experimentally were reproduced. Foam
states ranging from low (¢ = 0.44), intermediate (¢ = 0.84) to high gas frac-
tions (¢ = 0.99) matched the previously reported kinetics of two-dimensional
foam flowing around a cylindrical obstacle. The model does however have some
limitations. A disadvantage of the model is, that surface tension, interfacial
rheology (for instance sorption of surface active agents) and interaction forces
between neighboring bubbles do not appear explicitly in the formulation. In-
stead, they have to be accounted for by the repulsive parameter £ in Equation
3.

The next step will include the coupling with a Navier-Stokes solver. In the
present case, the lamellas between the bubbles require special treatment, be-
cause the film lamellas in realistic foam are too thin to be spatially resolved.
Alternatively, a subgrid model for the tangential stress between sliding bub-
bles could be incorporated. Also foam coarsening by gas diffusion could be
implemented by adding a source term to account for the gas transfer based
across the overlapping area formed by two adjacent identification functions
¢; and ¢; and by changing the growth rates o; and o; accordingly. Future
work will also include an extension to three-dimensional simulations. This can
be easily achieved with the phase-field model, because in contrast to other
methods, e.g. Volume-of-Fluid methods, the transport equation for the scalar
identification functions do not differ substantially between two and three di-
mensions. With a fully applicable phase-field model, the rheology of wet foam
near and across the jamming point could well be approached to extend the
experimental findings of other authors [27,73]. Also, the reversibility and the
relaxation dynamics of foam deformation close to the jamming point could be
further investigated and compared to space experiments [74].



20 Thales Carl Lavoratti et al.

1.8
— 240 x 150
—~ 208 x 130
1.6
—~ 176 x 110
R - 144 x 90
T4 - 112x70
e
=
=
= 12

10 “esattieger,

0.8
05 R/L 0 R/L 0.5
z/L

Fig. 17 Grid dependency test. Time-average velocity along the channel center line V()
with increasing mesh density.

The code implementation together with selected raw data have been made
available [75].

Appendix A: Grid dependency test

A grid dependency test is here presented. Five Cartesian grids discretizing
the channel into N, = 112, 144, 176, 208, 240 and N, = 70, 90, 110, 130,
150 nodes are considered, where N, and N, are the number of nodes in the
axial and transverse directions of the channel flow. In all simulations, the
ratio of the sharp bubble diameter to the channel height is kept constant and
corresponds to the mono-disperse scenario ¢ = 0.68 illustrated in Figure 5,
that is d/H = 0.12. The interfacial width is set to the size of one grid element,
that is £ = A and is the only nonconstant value. The time-average velocity
along the channel center line V,.(x) is determined for the fives grids. As seen
in Figure 17, all simulations deliver similar velocity profiles. In this work,
simulation data obtained with the finest grid, that is NV, = 150 and N, = 240,
are discussed.

Appendix B: Comparison to reference literature data

We compare the time-averaged velocity field of the driest mono-disperse foam
to experimental data. In the original experiment [51], a mono-layer bed of bub-
bles is confined between a lower liquid pool and an upper transparent wall.
A cylinder is placed in the channel center and the bubbles flow around it.
The experimental scenario is somewhat different to that presently simulated.
Here, two half-disks are located at the wall. In the numerical and experimen-
tal scenarios, the ratios of the equivalent bubble to obstacle diameter have the
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same magnitude order and equate dp,/(2R) = 0.37 and 0.15, respectively. Fig-
ure 18 compares the numerical and experimental velocity vectors, that have
been digitized from the publication. Despite the differences between the two
systems in terms of obstacle position, the magnitude and the direction of the
foam velocity qualitatively match. The discrepancies tend to increase as one
approaches the obstacle.
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