Software Open Access

HZDR Multiphase Addon for OpenFOAM

Schlegel, Fabian; Draw, Mazen; Evdokimov, Ilya; Hänsch, Susann; Khan, Harris; Lehnigk, Ronald; Li, Jiadong; Lyu, Hongmei; Meller, Richard; Petelin, Gašper; Tekavčič, Matej


Citation Style Language JSON Export

{
  "title": "HZDR Multiphase Addon for OpenFOAM", 
  "abstract": "<p>The HZDR multiphase addon contains additional code for the open-source CFD software OpenFOAM, released by <a href=\"http://www.openfoam.org\">The OpenFOAM Foundation</a>. The developments are dedicated to the numerical simulation of multiphase flows, in particular to the multi-field two-fluid model (Euler-Euler method). Within the OpenFOAM library the multiphaseEulerFoam framework is used for this type of simulation. The addon contains a modified multiphaseEulerFoam named <em>HZDRmultiphaseEulerFoam</em> with the full support of the HZDR baseline model set for polydisperse bubbly flows according to Liao et al. (<a href=\"https://doi.org/10.1016/j.ces.2019.03.007\">Chem Eng Sci, 2019, Vol. 202, 55-69</a>). In addition a solver dedicated to a hybrid modelling approach (dispersed and resolved interfaces, Meller et al., <a href=\"https://doi.org/10.1002/fld.4907\">Int J Numer Meth Fluids. 2021, Vol. 93, 748-773</a>) named <em>cipsaMultiphaseEulerFoam</em> is provided with the addon. This solver has an interface to the <em>multiphaseEulerFoam</em> framework and utilizes all available interfacial models of it.</p>\n\n<p><strong>General enhancements</strong></p>\n\n<ul>\n\t<li>modified turbulent wall functions of Menter according to Rzehak and Kriebitzsch (<a href=\"http://dx.doi.org/10.1016/j.ijmultiphaseflow.2014.09.005\">Int J Multiphase Flow, 2015, Vol. 68, 135-152</a>)</li>\n\t<li>dynamic time step adjustment via PID controller</li>\n</ul>\n\n<p><strong>HZDRmultiphaseEulerFoam</strong></p>\n\n<ul>\n\t<li>bubble induced turbulence model of Ma et al. (<a href=\"https://doi.org/10.1103/PhysRevFluids.2.034301\">Phys Rev Fluids, 2017, Vol. 2, 034301</a>)</li>\n\t<li>drag model of Ishii and Zuber (<a href=\"https://doi.org/10.1002/aic.690250513\">AIChE Journal, 1979, Vol. 25, 843-855</a>) without correction for swarm and/or viscous effects</li>\n\t<li>wall lubrication of Hosokawa et al. (<a href=\"https://doi.org/10.1115/FEDSM2002-31148\">ASME Joint US-European Fluids Engineering Division Conference, 2002</a>)</li>\n\t<li>additional breakup and coalescence models for class method according to Liao et al. (<a href=\"https://doi.org/10.1016/j.ces.2014.09.042\">Chem Eng Sci, 2015, Vol. 122, 336-349</a>)</li>\n\t<li>degassing boundary condition (fvModel)</li>\n\t<li>lift force correlation of Hessenkemper et al. (<a href=\"https://doi.org/10.1016/j.ijmultiphaseflow.2021.103587\">Int J Multiphase Flow, 2021, Vol. 138, 103587</a>)</li>\n\t<li>aspect ratio correlation of Ziegenhein and Lucas (<a href=\"https://doi.org/10.1016/j.expthermflusci.2017.03.009\">Exp. Therm. Fluid Sci., 2017, Vol. 85, 248&ndash;256</a>)</li>\n\t<li>real pressure treatment via explicit turbulent normal stress according to Rzehak et al. (<a href=\"https://doi.org/10.1016/j.nucengdes.2021.111079\">Nucl Eng Des., 2021, Vol. 374, 111079</a>)</li>\n\t<li>configuration files and tutorials for easy setup of baseline cases</li>\n\t<li>GPU-based accelerated computation of coalescence and breakup frequencies for the models of <a href=\"https://doi.org/10.1002/aic.690481103\">Lehr et al., AIChE J, 2002, Vol. 48, 2426-2443</a> (Petelin et al., NENE2021 conf., submitted)</li>\n</ul>\n\n<p><strong>cipsaMultiphaseEulerFoam</strong></p>\n\n<ul>\n\t<li>morphology adaptive modelling framework for predicting dispersed and resolved interfaces based on Eulerian multi-field two-fluid model</li>\n\t<li>compact momentum interpolation method according to Cubero et al. (<a href=\"https://doi.org/10.1016/j.compchemeng.2013.12.002\">Comput Chem Eng, 2014, Vol. 62, 96-107</a>), including virtual mass</li>\n\t<li>numerical drag according to Strubelj and Tiselj (<a href=\"https://doi.org/10.1002/nme.2978\">Int J Numer Methods Eng, 2011, Vol. 85, 575-590</a>) to describe resolved interfaces in a volume-of-fluid like manner</li>\n\t<li>n-phase partial elimination algorithm for momentum equations to resolve strong phase coupling (Meller et al., <a href=\"https://doi.org/10.1002/fld.4907\">Int J Numer Meth Fluids. 2021, Vol. 93, 748-773</a>)</li>\n\t<li>free surface turbulence damping for k-&omega; SST (symmetric and asymmetric damping, Frederix et al., <a href=\"https://doi.org/10.1016/j.nucengdes.2018.04.010\"> Nucl Eng Des, 2018, Vol. 333, 122-130</a>)</li>\n\t<li>sub-grid scale modelling framework:\n\t<ul>\n\t\t<li>additional LES models for the unclosed convective sub-grid scale term</li>\n\t\t<li>closure models for sub-grid surface tension term</li>\n\t</ul>\n\t</li>\n\t<li>configuration files and tutorials for easy setup of hybrid cases</li>\n</ul>", 
  "author": [
    {
      "family": "Schlegel, Fabian"
    }, 
    {
      "family": "Draw, Mazen"
    }, 
    {
      "family": "Evdokimov, Ilya"
    }, 
    {
      "family": "H\u00e4nsch, Susann"
    }, 
    {
      "family": "Khan, Harris"
    }, 
    {
      "family": "Lehnigk, Ronald"
    }, 
    {
      "family": "Li, Jiadong"
    }, 
    {
      "family": "Lyu, Hongmei"
    }, 
    {
      "family": "Meller, Richard"
    }, 
    {
      "family": "Petelin, Ga\u0161per"
    }, 
    {
      "family": "Tekav\u010di\u010d, Matej"
    }
  ], 
  "DOI": "10.14278/rodare.1133", 
  "note": "This work was supported by the Helmholtz European Partnering Program in the project \"Crossing borders and scales (Crossing)\"", 
  "language": "eng", 
  "id": "1133", 
  "type": "article", 
  "version": "2.1.1", 
  "issued": {
    "date-parts": [
      [
        2021, 
        8, 
        23
      ]
    ]
  }, 
  "publisher": "Rodare"
}
1,660
549
views
downloads
All versions This version
Views 1,660135
Downloads 54954
Data volume 11.9 GB1.5 GB
Unique views 96798
Unique downloads 25623

Share

Cite as