

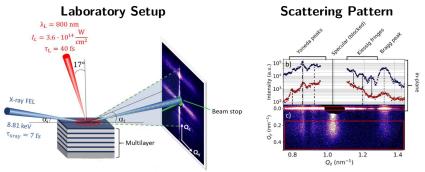
Simulating Multi Layer Targets for Grazing Incidence Small Angle X-ray Scattering

Bachelorthesis

Franziska Paschke-Brühl

July 28, 2021

Structure


GISAXS What is GISAXS? What motivated the thesis?

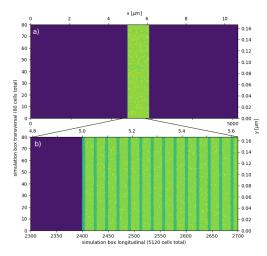
- 2 Target Setup What does the Setup look like?
- 3 Target Dynamics What kind of plasma dynamics can we observe in the target?
- 4 Density Oscillation What is Density Oscillation? How does it allow to determine T_e?
- Summary and Outlook What did we learn? What are the next steps?

2/18 Simulating Multi Layer Targets for GISAXS · 2021-07-28

GISAXS - grazing-incidence small-angle x-ray scattering

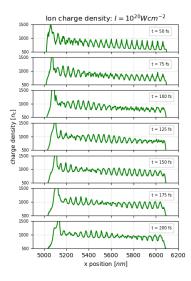
"Nanoscale subsufrace dynamics of solids upon high-intensity laser irradiation observed by femtosecond GISAXS" - Lisa Randolph et.al.

- \blacksquare x-ray scattering pattern \rightarrow layer density profile in the target
- intensities paper: $10^{14} 10^{16} \text{ Wcm}^{-2}$
- required: intact layer structure, dynamics within time resolution (500 fs)


Thesis Questions

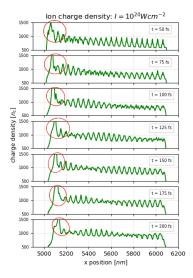
1 Is GISAXS feasible for high intensities?

- What should a target look like? How long do the layers survive? How thick should they be? How many layers do we need?
- **3** What time resolution do we need?
- What dynamics can we observe? Can we observe ablation, compression, density oscillation?
- **5** What parameters can we extract? Can we learn about the ablation velocity v_{abl} or electron temperature T_e ?

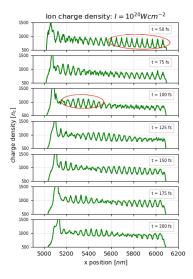

Target Setup

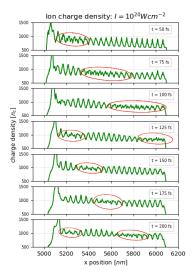

Simulation Parameters

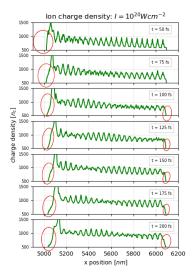
Laser $I = 10^{17} - 10^{22} \text{ Wcm}^{-2}$ $\tau = FWHM = 40 \text{ fs}$ Target layer 1: tantalum layer 2: copper nitrite $n_{layer} = 12$ $d_{Ta} = 12.55 \text{ nm}$ $d_{Cu_3N} = 33.33 \text{ nm}$ $d_{total} = 1100 \text{ nm}$



dynamics

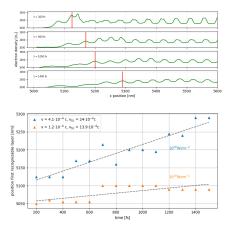

 plasma expansion front and back \rightarrow ablation, ion acceleration

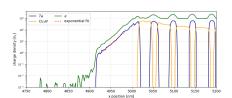

- plasma expansion front and back \rightarrow ablation, ion acceleration
- compression

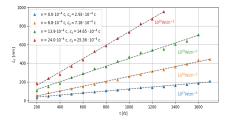


- plasma expansion front and back \rightarrow ablation, ion acceleration
- compression
- bulk effects \rightarrow melting layers

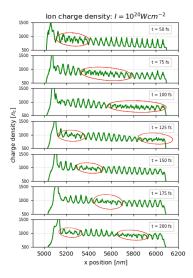
- plasma expansion front and back \rightarrow ablation, ion acceleration
- compression
- bulk effects \rightarrow melting layers
- density oscillation

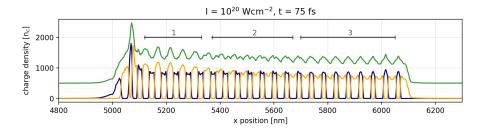



- plasma expansion front and back \rightarrow ablation, ion acceleration
- compression
- bulk effects \rightarrow melting layers
- density oscillation



Target Dynamics - Ablation velocity


 \rightarrow the front layer position does not correlate to the ablation velocity vel. of first recognizable layer vel. of scale length L_s

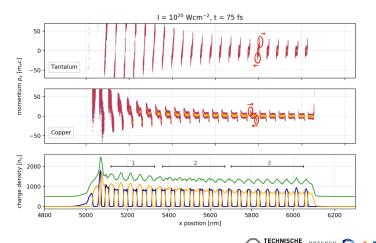

- plasma expansion front and back \rightarrow ablation, ion acceleration
- compression
- bulk effects \rightarrow melting layers
- density oscillation

Density Oscillation - Basics

What is oscillating?

 \rightarrow the \mathbf{single} layers oscillate in density

- **1** Cu_3N charge density (orange) exceeds
- **2** Cu_3N and Ta charge density are fairly equal
- 3 Ta charge density (blue) exceeds

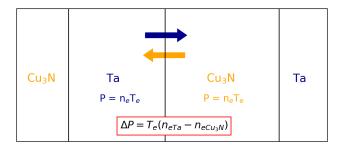

9/18

concep

Density Oscillation - Basics

Why are the layers oscillating?

 \rightarrow the layers repeatedly **compress** each other

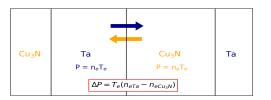

DRESDEN

concept

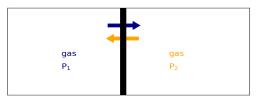
Density Oscillation - Process

What causes the compression?

 \rightarrow the **pressure difference** between the layers ΔP causes a force


Assumptions:

$$T_i \ll T_e$$
$$T_{e,layer1} = T_{e,layer2} = T_e$$


Density Oscillation - Modeling

How can we model the process?

concent

gases in cylinder separated by heavy piston after E.Gislason in "A close examination of the motion of an adiabatic piston"

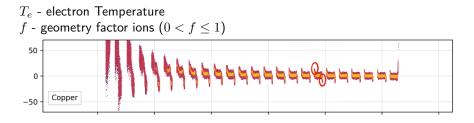
 \rightarrow gases with pressure P = energetic electrons with pressure P \rightarrow heavy piston = heavy, considerably cold ions

12/18 Simulating Multi Layer Targets for GISAXS · 2021-07-28

Density Oscillation - Oscillation Frequency

$$\omega_{osc}^{2} = \frac{T_{e}}{f\tilde{m}} \left[n_{1e}^{0} \frac{x_{0}}{x_{\infty}^{2}} + n_{2e}^{0} \frac{(L-x_{0})}{(L-x_{\infty}^{2})} \right]$$

 $n_{i,e}^0$ - initial electron density of layer i
 x_0,L - layer thickness parameters $x_\infty(n_{i,e}^0,x_0,L)$ - final position layer boundary (final position piston) $\tilde{m}(m_{i,ions})$ - mass factor heavy ions

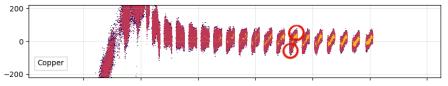

$$T_e$$
 - electron Temperature f - geometry factor ions ($0 < f \le 1$)

• 🗆

Density Oscillation - Oscillation Frequency

$$\omega_{osc}^{2} = \frac{T_{e}}{f\tilde{m}} \left[n_{1e}^{0} \frac{x_{0}}{x_{\infty}^{2}} + n_{2e}^{0} \frac{(L-x_{0})}{(L-x_{\infty}^{2})} \right]$$

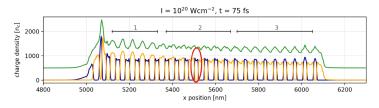
 $n_{i,e}^0$ - initial electron density of layer i
 x_0,L - layer thickness parameters $x_\infty(n_{i,e}^0,x_0,L)$ - final position layer boundary (final position piston) $\tilde{m}(m_{i,ions})$ - mass factor heavy ions



Density Oscillation - Oscillation Frequency

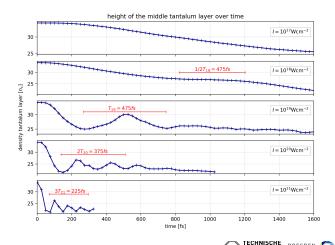
$$\omega_{osc}^{2} = \frac{T_{e}}{f\tilde{m}} \left[n_{1e}^{0} \frac{x_{0}}{x_{\infty}^{2}} + n_{2e}^{0} \frac{(L-x_{0})}{(L-x_{\infty}^{2})} \right]$$

 $n_{i,e}^0$ - initial electron density of layer i
 x_0,L - layer thickness parameters $x_\infty(n_{i,e}^0,x_0,L)$ - final position layer boundary (final position piston) $\tilde{m}(m_{i,ions})$ - mass factor heavy ions


$$T_e$$
 - electron Temperature f - geometry factor ions ($0 < f \leq 1$)

Density Oscillation - Intensity Scan

height of the middle tantalum layer over time

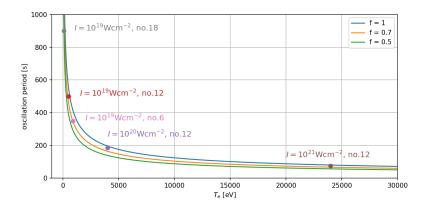


• 🗆

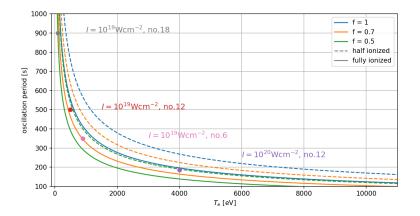
Density Oscillation - Intensity Scan

height of the middle tantalum layer over time

 \rightarrow measure the oscillation period



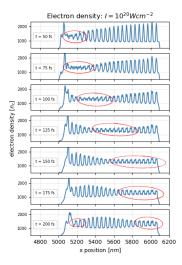
۰


DRESDEN

concept

Density Oscillation - Comparison Model and Simulation

Density Oscillation - Comparison Model and Simulation


ISCHE

DRESDEN

concept

Þ

Density Oscillation - GISAXS feasibility

■ electron density dominated by tantalum → oscillation period for tantalum layers

- can not follow single layer oscillation
- can follow density alteration over time
- GISAXS: Is the layer structure intact or not?

Thesis Questions

- Is GISAXS feasible for high intensities? Yes!
- 2 What should a target look like?

layer thickness similar to the simulation setup, more layer for higher intensities (>12), layers survive 100 fs to several ps

- **3 What time resolution do we need?** 50 100 fs
- What dynamics can we observe? compression, layer expansion front and back, density oscillation
- **5** What parameters can we extract? electron temperature T_e based on the density oscillation frequency

- create scattering pattern with BornAgain to confirm GISAXS feasibility
- \blacksquare model damping and diffusion to erase free parameter f
- recommend GISAXS experiments for high intensities, support with simulations

